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Executive Summary

Artificial Intelligence (Al) has the potential to fundamentally transform new product
development. Applied effectively, it can automate and accelerate engineering processes end
to end, from early concept design to product release. Yet this transformative power can only be
realized if companies act early and decisively to establish the right technical, organizational,
social, and process foundations. Lacking a robust foundation, Al remains confined to pilot
successes far from achieving enterprise-wide value.

This white paper presents a scalable framework for Al adoption in engineering, designed to help
organizations move beyond fragmented pilot projects toward an enterprise-wide approach. The
framework enables leadership to align Al development with strategic business goals while
preventing the proliferation of disconnected use cases that dilute value and create complexity.

A central element of the white paper is the classification of Al use cases into two
complementary categories.

e Vertically integrated Al use cases focus on optimizing specific processes or domains,
such as automated design iterations or generation of domain-specific development
artifacts.

o Horizontally integrated Al use cases connect data, tools, and engineering domains,
enabling knowledge sharing, system-level optimization and application across domain
and tool boundaries.

While most organizations today concentrate on vertical applications, the greater long-term
opportunity lies in horizontal integration. By linking product requirements, architecture, design,
simulations, and test artifacts, horizontally integrated Al can unlock cross-domain synergies,
accelerate the product development process, and reshape how engineering value is created.

To capture this potential, technology and organization must evolve in tandem. Companies
should initiate high priority use cases early to generate learning effects and tangible ROI. At the
same time, they must invest in Al-ready infrastructure that ensures interoperability between Al-
native platforms and the existing engineering toolchain. Data quality and accessibility become
strategic assets, requiring the creation of high-quality data products and the deployment of
context modules in the form of knowledge graphs and vector databases to connect data, tools,
and processes. Finally, a robust governance framework is essential. Clear guidelines for Al
development and lifecycle management will secure alignment with corporate strategy,
maintain compliance, and prevent uncontrolled proliferation of use cases.

To ensure the long-term scalability of Al initiatives in new product development, various
dimensions must be considered. Unmanaged initiatives will lead to Al fragmentation along
existing tools and data silos, preventing the full potential of Al in engineering from being
realized.

Companies that act now to establish these technological, organizational, and governance
foundations will not only accelerate their product development cycles but also create a

sustainable competitive advantage. Those who delay risk being locked into fragmented
solutions and losing pace in an increasingly Al-driven engineering landscape.
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Over the past decades, engineering has undergone a fundamental transformation driven by
digitalization. The introduction of computer-aided design (CAD), product data management
(PDM) and product lifecycle management (PLM) has evolved into the vision of the digital thread,
an interconnected data backbone that links data, information and processes across the entire
product lifecycle, from concept to end-of-life. This digital continuity provides engineers with
unprecedented visibility and traceability, enabling faster innovation, improved quality, and
more efficient decision-making. Many companies still struggle to realize an end-to-end digital
thread and attempt to manage the complexity of modern cyber-physical products with rigid,
sequential development methodologies and fragmented tool and data architectures, resulting
in long development cycles and inefficiencies.

In parallel, Al has matured from experimental research in pattern recognition and machine
learning (ML) into a practical tool that enhances nearly every aspect of engineering. In recent
years, the emergence of generative Al (GenAl) and Agentic Al has marked a new phase, where
Al is no longer only supporting decision-making but actively creating development artifacts
across the product development process such as requirement models, product architectures,
CAD designs, simulations and test results. This progress is reshaping how engineering teams
work, collaborate, and innovate in the future.

To leverage Al in engineering at scale, however, organizations require a structured approach.
This white paper aims to provide decision-makers, engineers, and other stakeholders with
guidance in the rapidly evolving landscape of Al applications in engineering. In this Section,
key concepts are introduced, a scalable framework for the adoption of Al in engineering is
presented, and a maturity model based on the automation levels of autonomous driving (SAE
2014) is developed to classify Al applications according to their vertical and horizontal maturity.
These foundations are then applied in the subsequent Section “Use Cases” to discuss the
current state of the art and to analyze 137 research papers. In the “Outlook” Section, we
formulate hypotheses on how engineering will evolve under the influence of Al, GenAl, and
Agentic Al, and outline the measures companies should take in the short and long term to
accelerate their product development processes and eliminate inefficiencies.

Digital Thread

<11 Definition of Digital Thread

= A Digital Thread is a framework that seamlessly connects data, models, and
processes across the entire product lifecycle, from ideation and product
development to manufacturing and service (Abdel-Aty & Negri 2024). It enables
the continuous flow and accessibility of information by integrating previously
siloed systems and data sources, thereby overcoming data fragmentation across

departments and disciplines. By providing a unified, traceable, and context-rich
representation of a product’s digital history and evolution, the Digital Thread acts
as the future data backbone of engineering, manufacturing, and services. It
supports real-time decision-making, improves collaboration, and lays the
foundation for advanced capabilities such as GenAl applications and closed-loop
engineering feedback.

The Digital Thread represents a core concept for the integrated flow of product data across the
entire product lifecycle. By collecting and networking heterogeneous product data across
different product representations, a Digital Thread ensures that information and data flow
seamlessly along the value chain, creating transparency, traceability, and collaboration
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between engineering disciplines. Accordingly, a Digital Thread facilitates the exchange of
critical data in product development and enables additional services, the development of new
features and the rapid identification of optimization potential (Ghosh et al. 2025). A simplified
visualization of these interconnected product representations is shown in Figure 1.
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Figure 1: Simplified Visualization of Connecting Product Representations via the Digital Thread

According to Abdel-Aty and Negri (2024), the main characteristics of a digital thread can be
summarized as follows:

¢ Integration Across Lifecycle Stages: it links engineering, production, supply chain,
and service data, enabling seamless collaboration.

¢ Real-Time Data Sharing: it provides up-to-date information access across
departments and disciplines.

o Improved Decision-Making: it enhances efficiency, quality, and predictive capabilities
across product development and operations.

e Foundation for Digital Twin: it supports the creation of a digital twin as a virtual
representation of the physical asset.

While closely linked, it is important to distinguish the Digital Thread from the Digital Twin. The
Digital Twin focuses on creating a virtual product-centric representation of a physical asset,
whereas the Digital Thread focuses on the flow of information and data across the product
lifecycle. Companies developing mechatronic and cyber-physical products as well as research
institutes recognize the necessity of establishing Digital Threads, which is why most recent
publications examine the significance of the Digital Thread (Bianchini et al. 2024, Abdel-Aty and
Negri 2024) and show the connections to Al applications (Zhang et al. 2024). Holterman et al.
(2024), for example, systematically show how the establishment of Digital Threads contributes
to the robustification of supply chains in various industries in the US economy and name Al as
a technology that leverages the Digital Thread. Although the concept of the Digital Thread has
been researched, solutions for its realization are already offered by software vendors, and the
concept theoretically promises significant acceleration of product development processes,
companies in industrial practice still struggle with scalable implementation. Data is typically
distributed across a fragmented IT and tool landscape, difficult to access, ambiguous,
incomplete and weakly connected across different engineering disciplines (Hedberg et al.
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2020, Kwon et al. 2020). These circumstances make it difficult to establish seamless workflows
across tool and engineering discipline boundaries and require a lot of manual work. This is
particularly noticeable in change management processes, where cross-disciplinary work on
different engineering artifacts often must be carried out iteratively and the identification of the
affected configuration elements or impact chains is time-consuming and resource-intensive
(Burggraf et al. 2024).

Building on these challenges, Al technologies and its powerful subfields GenAl and Agentic Al
are increasingly recognized as enablers for realizing Digital Threads in practice. By addressing
issues of data fragmentation, semantic alignment, and workflow automation, Al can unlock the
potential of Digital Threads and make them scalable across industrial environments. The
following Subsection therefore introduces and distinguishes the terms Al, GenAl, and Agentic
Al and situates their role in the product development process.

Al in Engineering

For a long time, the application of Al in the product development process played only a minor
role. However, in recent years, breakthroughs in the fields of GenAl and Agentic Al have marked
a turning point. These advances have been accompanied by significant expansions in Al
capabilities, which in turn have massively broadened the range of possible applications of Al
algorithms within engineering contexts.

Artificial Intelligence
Applications that can perform tasks requiring human-like
intelligence by leveraging techniques from computer science
Agentic
Al
Automation of multi-
GenAl step workflows using
Creating new content interacting Al models
Deep Learning based on high-volume
. . Learning patterns from database
Machine Learning high-dimensional data
Learning patterns from
low-dimensional data
Capabilities
Pattern Recognition Feature Extraction Content Generation Planning & Reasoning
Anomaly Detection High-Dimensional Data Knowledge Transfer Orchestration
Classification Processing Context Management Memory
Regression Scalability with Big Data Human-like Interaction Multi-Agent Collaboration
Statistical Inference and Computing Power Tool Interoperability

Figure 2: Evolvement of Al Algorithms and corresponding Capabilities

The evolution of Al and the corresponding extensions of its capabilities that emerged with the
establishment of distinct Al subfields are illustrated in Figure 2. Al can be understood as an
umbrella term for a wide variety of applications in which the automated execution of tasks is
enabled by techniques from computer science that originally required human-like intelligence.
As research on data-driven models progressed, specific subfields of Al emerged. These
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subfields demonstrate different capabilities and impose varying requirements on the
underlying datasets.

ML emerged as a paradigm focused on identifying patterns and deriving inferences from
structured, often low-dimensional data (Mitchell, 1997). With the advent of Deep Learning (DL),
the field shifted toward extracting representations from high-dimensional data, enabling
scalability with large and unstructured datasets such as images, speech, and sensor signals
(LeCun et al. 2015). The next step in this evolution is Generative Al (GenAl), which leverages
large-scale models trained on high-volume databases to create novel content such as text,
code, or designs. GenAl thereby expands Al's role from pattern recognition to content
generation and contextual interaction, offering new possibilities for knowledge transfer and
human-machine collaboration (Cao et al. 2023; Feuerriegel et al. 2024). Most recently, Agentic
Al builds on these generative capabilities by orchestrating multi-step workflows through
planning, reasoning, memory, and tool interoperability (Wang et al. 2024c). This marks a
significant increase in autonomy, where Al systems are no longer limited to generating outputs
but can act as agents within complex engineering and product development environments.

Taken together, these stages show not only a rapid technological evolution but also an
expansion of potential applications in the product development process: from supporting low-
dimensional data analysis (ML), through managing complex engineering data (DL), to assisting
in creative design and knowledge-intensive tasks (GenAl), and ultimately enabling partially
autonomous management of iterative, cross-disciplinary workflows (Agentic Al).

Before the full potential of the presented Al subfields can be realized in product development
processes, certain prerequisites must be established. While companies can already implement
high-value Al use cases that deliver a fast Return on Investment (ROI), focusing solely on
isolated use cases risks reinforcing the very challenges many organizations already face in
relation to data, tools, and processes: fragmentation. To avoid this, it is essential not only to
identify and implement high-value use cases but also to create the structural and organizational
conditions that allow Al in engineering to scale sustainably.

We argue that these approaches are not mutually exclusive but can complement one another.
On the one hand, implementing high-value Al use cases within individual engineering
disciplines can lay important groundwork for the Digital Thread. On the other hand, adopting a
“Thread-First” perspective (Accenture Research Report 2021) ensures that strategic objectives
and key capabilities are defined and continuously monitored, guiding the selection and
execution of Al initiatives. Such a combined strategy leverages synergies: it enables
organizations to capture rapid benefits through GenAl use cases while simultaneously ensuring
the long-term scalability of these solutions, ultimately helping to overcome data silos and
fragmented IT landscapes.

To ensure a scalable application of Al in the product development process, several dimensions
need to be considered and systematically consolidated within a unified framework. For this
reason, the following Subsection introduces a framework consisting of five key dimensions,
which should be considered in every engineering Al transformation.
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Framework for Scalable Al in Engineering

The current starting point for most engineering companies developing complex, mechatronic
product is challenging and characterized by

e inadequate data flows / connectivity across lifecycle stages,

e persistent data silos,

e proprietary and non-standardized PMT departments,

e alack of interoperability between engineering tools, methods, and disciplines,
e redundant, ambiguous and incomplete data,

e missing real-time access to consistent product information,

e theinvolvement of many expensive tools.

The root cause lies in historically grown engineering tool chains, workflows, and collaboration
models. Efforts to optimize individual disciplines have led to a fragmented landscape of tools,
data and processes, often lacking a holistic product-level perspective. This situation impedes
the realization of end-to-end traceability, consistent data management, and efficient cross-
domain collaboration.

Addressing these challenges requires deliberate efforts to establish a connected engineering
landscape that builds upon existing solutions. Central questions arise:

1.  How can companies modify their brownfield environments to achieve maximum value
with manageable efforts?

2. How can engineering be prepared for the future, where Al will play a pivotal role?

3. What steps should companies take to rapidly address high-value Al use cases while
simultaneously building the foundations for scalable Al strategies in the product
development process?

To answer these questions, we propose a framework for the scalable application of Al in
engineering (see Figure 3) that helps organizations to pay attention to key capabilities, which
should be considered and monitored during the implementation of Al use cases and serve as
the foundation for a Digital Thread & Al adoption.

Our framework focuses on five key dimensions critical to establishing an Al-enabling Digital
Thread:

1. Data Quality: Increasing data quality consists of ensuring the use of a limited number
of consistent data formats for engineering artifacts across the product lifecycle and
eliminating redundant, ambiguous and incomplete data. We propose a decentralized
data architecture based on the data mesh concept (Dehghani 2022), which bundles
domain-specific data into data products and catalogs. Data is made available for the
application of Al use cases. The overall goal of the Data Quality dimension is to provide
accurate, reliable, and understandable data products from the engineering toolchain
that are accessible to data consumers. The aim is not to guarantee data completeness,
accuracy, and uniqueness across all data sets, but rather to ensure the necessary level
of data quality for particularly important data sets and facilitate reliable Al applications.

2. Interoperability: Data is generated, managed, and maintained within the engineering
toolchain. To enable both accessibility and modification of this data by Al applications,
bidirectional communication between the individual tools and the Al platform is
essential. This communication is facilitated through an interoperability layer positioned
between the engineering tools (and their data products) and the Al platform. The
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interoperability layer ensures seamless data transfers, synchronization as well as agent-
based communication, thereby creating the foundation for efficient and scalable
integration of Al into engineering processes.

3. Al Platform: The Al Platform and its infrastructure ensure the technical realization of Al
use cases. The technical infrastructure consists of polyglot data storage solutions,
computing capacities and connections to cloud or on-premises systems. The Al
applications are then implemented on the Al Platform using microservice architectures
and containerized CI/CD pipelines, which are continuously updated and monitored.

4. Context Management: Knowledge from the entire product development process
should be made accessible and structured at central points. For this purpose,
knowledge is aggregated on the Al platform within context modules, which are
represented in the form of knowledge graphs (KGs) and vector databases. The objective
of these context modules is to capture the relationships between the development
artifacts contained in the domain-specific data products and enabling quick access to
relevant information. Access to model-based systems engineering (MBSE) tools and
(cross-domain) process models that represent product and process modeling at the
metamodel level is also an important source of context for providing GenAl and Agentic
Al applications with the information required for handling complex engineering tasks.

5. Federated Governance: The Federated Governance Team is responsible for the overall
management of the Al use case landscape. This includes the definition of standards and
interfaces for data transfer, the strategy definition for use case selection and the
specification and continuous monitoring of targets and KPls. Specifying common,
cross-domain processes and ensuring interoperability between domains is the central
task of federated governance, without interfering too deeply in the domains' areas of
responsibility. To ensure secure and compliant use of product data, solutions must
provide dynamically managed usage rights while guaranteeing compliance with
regulations, safeguarding data ownership, enabling secure third-party interfaces, and
meeting cybersecurity requirements.
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Figure 3: Proposed Al in Engineering Framework with five Key Dimensions
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The following Subsections describe the five key dimensions in detail and provide insights into
the components that constitute these key dimensions. In addition, experts from the respective
domains share perspectives on industrial implementations and report on practical experiences.

Data Quality

Ensuring high data quality in engineering tool landscapes is a critical challenge for any
enterprise. Engineering activities generate and manage a wide range of artifacts across multiple
tools. As products become more complex with increasing E/E and software integration, data
heterogeneity increases, and the number of different data formats expands, leading to an
exponential rise in data management complexity. Each engineering domain typically works with
its own data models, formats, and lifecycles. To effectively manage this complexity, a data mesh
approach with a decentralized data architecture (Dehghani 2022) is recommended, which is
well-suited for engineering environments (Hooshmand et al. 2022). In such a setup, domain
teams act as data product owners, leveraging their deep understanding of domain-specific data
and formats. Domain-specific data is bundled into consumable data products and provided to
a variety of data consumers across the organization.

pata Quality,

Metadata Synthetic Data
Management Generation

Define and maintain

Data balancing for
metadata schemas

realistic data distributions
Enable semantic «  Foundation for
interoperability simulations on domain-
Metadata as foundation specific scenarios

for linking, queryingand| «  Extension of incomplete
integrating cross-tool datasets
data

Data Quality Monitoring Machine-Readability

Detection of data Transform data into
inconsistencies standardized formats

Implement quality
monitoring pipelines
Establish domain-
specific validation

Apply schema definitions
and formats
Codify domain
knowledge using
ontologies

rules

Figure 4: Pillars of Data Quality in Engineering Tool Landscapes

Figure 4 shows the four most important pillars for ensuring high data quality. The pillars are
discussed below in the context of product development.

1. Machine-Readability: A key objective is to maximize data reuse across the enterprise
while minimizing the number of data formats in use. To achieve semantic consistency
and machine-readability, particular emphasis must be placed on the codification of
engineering artifacts, transforming heterogeneous data into structured, machine-
readable formats and embedding them in schema syntaxes (Hooshmand 2022).
Engineering data is highly heterogeneous, which is why different domains have their
own standards and data formats (see Figure 5). The conversion of unstructured data into
defined schemas and the introduction of domain-specific semantic rules is a basic
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prerequisite for making data machine-readable and thus preparing it for use by Al
algorithms. For example, unstructured data in industrial companies contains a wealth of
information that is extremely important for Al applications (Tinnes et al. 2024), Al
algorithms can extract valuable information from it (Mahadevkar et al. 2024) and serve
as data preprocessors (Zhang et al. 2023). Care must be taken to ensure that the outputs
of the algorithms are structured and correspond to the specifications of the desired
data formats (Liu et al. 2024b). Especially in engineering, there are many different,
complex technical documents and files from which a variety of information can be
extracted. Jamieson et al. (2024) provide a comprehensible overview of Al applications
for the processing of technical engineering documents. Zhang et al. (2025b) summarize
different use cases that derive textual descriptions and annotations from CAD models.
A structured analysis conducted in 2022 within the Al Marketplace initiative assessed
23 common data formats and data models from the product development process for
their suitability in serving as Al model input and demonstrated that, at this point in time,
many of them require transformation processes that result in data loss (Al Marketplace

2022).
| OSLC/RDF |
Requirement Release
FMI
SSP
Modellica ODX
AUTOSAR STEP
FDX T
GENIVI OPC UA
Product Design
VEC |++
Modelling & Simulation
SMF Auto.ML

Figure 5: Typical Data Formats, Models and Standards in the Engineering Domain based on prostep ivip
(2025)

In the future, the reusability of machine-readable data from past product development
cycles and the use of standardized data formats will be one of the most important
success factors for the scalable application of Al in product development and should
therefore be part of every engineering Al transformation.

2. Data Quality Monitoring: To ensure compliance with domain-specific schemas, a range
of data quality tools have been developed to continuously monitor, evaluate and
improve data quality (Altendeitering & Guggenberger 2024, Altendeitering et al. 2024).
Typical cases are the identification of inconsistencies, missing values, redundancies or
outdates, where data quality tools either make automated modifications or guided
recommendations to the user. Al algorithms can provide support for highly repetitive
tasks, such as cleansing data (Narayan et al. 2022) and converting unstructured data
into machine-readable formats (Zhu et al. 2024). The creation of monitoring pipelines
and the introduction of domain-specific validation rules is recommended to enable the
most efficient possible bundling into data products and to improve their quality. Zhou
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et al. (2024b) provide a comprehensive review of data quality dimensions and tools for
Al applications. It is important to note that while accuracy, completeness, and
unambiguity of data are desirable objectives, achieving them in absolute terms is either
unattainable or only possible at unjustifiable effort. In the context of an Al engineering
transformation, this raises the question of which data are particularly critical, which
need to be monitored, and to what extent data quality must be improved to generate
reliable Al outputs.

3. Metadata Management: Among all data layers presented in Figure 3, metadata plays a
critical role and is decisive for algorithms to understand the horizontal and vertical
complexity of a mechatronic product (Bode et al. 2024). Metadata provides the
semantic context needed for machines and humans alike to understand and process
data. It forms the foundation for semantic interoperability, a prerequisite for data
sharing and integration activities. Therefore, engineering artefacts should be
consistently described by metadata, whereby GenAl can support the creation,
standardization, and maintenance of metadata (Yang et al. 2025). Metadata is
particularly important in the framework presented in Figure 3, as it is fundamental to
two of the key dimensions presented: interoperability and context management.

4. Synthetic Data Generation: When only incomplete datasets or those that do not cover
the full solution space are available, enriching them with synthetic data is an effective
way to improve the performance of Al algorithms. Synthesizing data can also serve as a
valuable fallback, especially in domain-specific scenarios where little or no real-world
data is accessible, such as early development phases, edge cases, or rare failure modes
in engineering systems. In engineering domains, the generation of synthetic data is
gaining increasing importance, as real-world data collection is often time-consuming,
expensive, or limited by operational constraints. Techniques for synthetic data
generation range from simple rule-based simulations to advanced generative models
like Generative Adversarial Networks (GANs) or diffusion models. These synthetic
datasets can be used to train, validate, and test Al models under a variety of conditions
and have proven to enhance Al performance in different domains, such as requirement
management (El-Hajjami & Salinesi 2025), MBSE (Muttillo et al. 2024) and scenario
testing (Song et al. 2025).

In summary, managing data quality in engineering tool landscapes is fundamental for the
success of any Al use case and requires a shift towards decentralized data ownership, as in-
depth knowledge of domain-specific data is only available in the domain teams. Recognizing
weaknesses in data management and tackling them with the pillars presented is an important
first step towards the transformation into data-driven engineering. LLMs have recently proven
that they are suitable for a range of tasks to increase data quality (e.g. Naeem et al. 2024) and
often the first valuable Al use case is not to optimize (engineering) processes, but to improve
data quality (Singh 2023).
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Industry Insights into Data Quality Management

The increasing number of data sources, volumes, and formats makes data quality
management a complex topic. The processes for identifying, analyzing, and resolving
data quality issues are often manual and cumbersome. Moreover, the necessary
metadata in the form of data profiles and data quality rules is often not available,
which further complicates data quality management. As a result, data quality Marcel Altendeitering
problems often remain undetected and lead to process disruptions.

Head of Department

To address this problem, we implemented Al and ML technologies at multiple points FraunhioferSST

of the process. At the beginning of the process, we utilized ML algorithms for
automated data profiling and generating data quality rules for multiple attributes to
identify dependencies. Based on these solutions, we used established GenAl models
to generate metadata and transform the identified data quality rules into SQL code.

An important insight of the use case was that Al and ML technologies are very well-
suited for identifying complex data quality rules and accuracy problems involving

multiple attributes. These are often missed by humans. Additionally, the automated Tobias Guggenberger
generation of SQL code helps reduce the manual effort required for creating data Group Lead
quality rules. Fraunhofer ISST

Interoperability

In the framework presented in Figure 3, we present multiple levels on which data is managed
and made accessible. Data must be transferred between engineering toolchain, its data
products and the Al platform and its context modules. The transfer should be as efficient and
as close to real time as possible to ensure up-to-date representations. Interoperability refers to
the exchange of data between these levels and thus pursues the goal that different product
representations, artifacts and metadata are continuously synchronized and thus the same
product data with different levels of detail is available at all levels. Access to the latest data is
particularly important for Al in engineering, as relationships between domains, disciplines, and
development teams evolve dynamically, and the performance of Al algorithms can only be
guaranteed if accurate and up-to-date context is provided (Mei et al. 2025). Figure 6 shows the
four most important pillars for enabling interoperability, which are further discussed below.
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Figure 6: Pillars of Interoperability in Engineering Al Landscapes

1. Multimodal Processing

Engineering data are inherently heterogeneous, appearing in many formats and
dimensionalities throughout the product development process (see subsection Data
Quality). This is why data connectors must be tailored to accommodate these variations
and preserve context. Engineering data combines 3D models, simulation results, test
signals, and rich metadata. Some arrive as very large files, others as fast, continuous
streams. To keep the levels of the framework synchronized, the interoperability layer
needs connectors that can move these different data types efficiently and keep their
context linked. Research on Digital Thread shows that lifecycle analytics only work when
heterogeneous data stays connected across systems, not just copied in pieces (Abdel-
Aty et al. 2024). At the same time, studies on big-data transfer in cloud environments
show that the choice of the transfer approach strongly affects throughput, latency, cost,
and security (Majigi et al. 2025), which is why connectors should support both bulk
movement and real-time streaming while preserving metadata for traceability.
Especially the transfer of high-dimensional data such as CAD and simulation models is
challenging due to large file sizes and heterogeneous formats. Recent studies show that
converting these assets into HDF/HDF5 can streamline movement of memory-intensive
CAD models (Khan & Rezwana 2021) and simulation datasets (Kunc & Brocker 2024;
Brocker et al. 2024), which has the potential to improve interoperability between
engineering tools and Al platforms in the future.

2. Data Lineage: Data lineage, closely linked to the concept of data provenance, refers to
the lifecycle and movement of data, enabling the capability to identify the data source
(input) and destination (output), including all transformations, processes and
intermediate steps, at any point in time and in any system. Especially when data is
transferred multiple times between the levels of the framework, it is important for
regulatory and validation purposes to comprehend the origin of the data to be able to
continuously assess data quality and reliability. Corresponding information can be
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stored in metadata, which is why data lineage is closely linked to the quality assurance
of data (see key dimension Data Quality). In cases where the performance of trained Al
models is unexpectedly poor, data lineage approaches help identify errors in the
datasets and uncover their root causes (Pahune et al. 2025). Data and Al form a
sociotechnical construct in which effective collaboration between domain and Al
experts working on different levels in the framework depends on a shared
understanding of the data: an understanding made possible through data lineage,
which serves as a prerequisite for transparent communication about data origins,
context, and transformations (Jarrahi et al. 2023).

Smart Synchronization: To be able to access the most up-to-date data at all levels, the
data must be synchronized without creating copies. Access to current data in real time
is a key feature for the engineering of the future, as it allows real-time optimization
between levels and even the integration of data outside of engineering (manufacturing,
maintenance & service), as emphasized by Ghosh et al. (2025). Data federation enables
such access by allowing users to query multiple, heterogeneous data sources through
a unified interface, without duplicating or moving the data. This minimises the amount
of integration work required, helps maintain up-to-date data, and enables real-time
analysis.’ (Gu et al. 2024) Complementing this, modern data stream processing
systems, as highlighted by Fragkoulis et al. (2024), provide the technical backbone for
real-time synchronization by enabling stateful, low-latency, and fault-tolerant
integration of live data flows across distributed engineering tools and systems. It is
important to recognize that valuable data does not just come from engineering tools,
but also includes information from production systems, sensors, and loT devices,
offering insights from the manufacturing and service phases and enabling the vision of
closed-loop engineering (Durdo et al. 2024). Regarding synchronization, users should
ask themselves which data is exchanged in which format and at what frequency
between the levels to minimize costs and latencies as much as possible.

Interoperability Standards: Especially dealing with engineering data, a lot of
interoperability challenges can be faced, such as different standards and specifications,
lack of semantics, lack of communication mechanisms and protocols, high complexity
and costs, lack of trust regarding data sharing and security/privacy concerns and
scalability (Liepert et al. 2024). Interoperability and integration must not only be
considered in terms of streaming data from engineering tools into the Al platform, but
also in the reverse direction: insights gained from data-driven analysis at higher system
levels must be fed back into the engineering tools and result in (human-supervised)
modifications of engineering artifacts. This bidirectional flow is essential to enable data-
driven engineering. Many standardized technologies for data exchange are available
nowadays. Most widely used are APls, which are implemented in almost every modern
tool or platform. Standardized data exchange between tools and platforms can also be
enabled through ETL data pipelines (Foidl et al. 2024) and message queues (Maharjan
et al. 2023). Additional emerging technology standards that significantly improve tool
accessibility and agentic communication are Anthropic’s Model Context Protocol (MCP)
(Hou et al. 2025b) and Google’s Agent-to-Agent (A2A) protocol (Ray 2025). MCP ensures

TGu et al. (2024) provide a comprehensive survey of data federation systems, analyzing 51
solutions using a structured evaluation framework. Their work identifies key capabilities (e.g.,
query languages, security features, supported data types) and highlights data federation's value
in enabling integration of distributed data without compromising freshness or consistency.
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standardized communication between agents and (engineering) tools, while A2A
enables standardized communication between multiple agents in multi-agent systems.
Figure 7 illustrates a MCP workflow for an engineering use case. The engineer interacts
with an MCP Host, which represents an application, and submits a prompt to the MCP
Client, which the MCP Host manages. Based on the prompt, the MCP Client establishes
a connection to an MCP Server that has access to one or more engineering tools.
Through API invocation and the use of pre-defined prompt templates, the server can
either retrieve data from the tools or execute tasks within them. During this process, the
client and server communicate bidirectionally until the task is completed. The engineer
then receives a response from the client regarding the task's completion.

MCP Workflow Engineering Tools
Prgmpt: MCP Hosts: Transfer Layer MCP Servers: -
»Listall Application attempting to Servers withaccessto 47 Web Services
requirements =5 acess data engineering tool
affectlﬂgtge Request landscape and operation Databases
housing. execution capabilities
MCP Clients: .
Protocol clients with £  Response ﬁg D Local Files
N 1:1 cgnnectlon to o 8 ‘ U
configured MCP
M servers _ Notifi- |
"~ cation | APl Invocation
Engineer

Figure 7: MCP Workflow based on Hou et al. (2025b) adapted to an Engineering Application

In the example provided, the engineer ideally receives a list of all requirements related
to the housing, which are managed within the requirement management tool accessible
by the MCP Server. In the future, MCP implementations will mean that routine tasks such
as data calls or simple modifications to engineering artifacts will no longer have to be
performed within the designated tools, but can be carried out using simple prompts on
an Al platform.

In summary, interoperability is essential to ensuring a consistent, real-time representation of
engineering data across different abstraction levels in the enterprise IT landscape. It enables
synchronized product views from detailed engineering artifacts to high-level knowledge graphs
and Al-ready datasets. Interoperability requires multimodal data processing capabilities,
domain-level ownership, and clear traceability to ensure transparency. Real-time data
synchronization and federated access help keep information up to date without duplication.
Standards and integration technologies like APIs and MCP or A2A enable smooth data flow
between systems, turning Al insights into engineering actions. This lays the groundwork for
data-driven engineering and faster, data-driven decisions.
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Industry Insights into Data Streaming & Product Data
Changes

At a German Automotive Company, bridging the gap between Car Design and Component
Manufacturing has always been a challenge. Meeting it means combining data sources for
Bills of Materials, Configurations and Supply Chains.

We used the Streaming Service Kafka to connect various source systems to a central cloud-
based data hub which does the calculation. Sources communicate a change to their data
via message which is put into a topic in the stream. Kafka lets the receiving end choose
when to read these messages.

There is a dilemma, though: Product data is massive, reader’s interests are very diverse,
changes happen frequently, calculating them is costly. Therefore, senders have an incentive
to add content to the messages to provide for more receiving parties at the same time. On
the other hand, receivers prefer smaller, more relevant topics. Addition of content means
more messages. A small amount at first, but the growth was exponential and overwhelmed
our receiver soon. What to do?

As we could not limit the topics’ sizes and senders were unable to flag the changes, we
established an “intelligence kernel” in the receiver. A concentrated, quick to apply version
of the main intelligence which is itself constantly updated in case of relevant changes. It
reduced the number of irrelevant messages by more than 99%.

Sebastian Mario Jiilich
Solution Architect
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Al Platform

In addition to decentralized data architecture, engineering enterprises require a centralized Al
platform where Al use cases can be developed providing required storage and computing
capacities. Modern Al algorithms, particularly LLMs and agent-based systems, depend on
powerful infrastructures consisting of computing resources, storage, and containerized
development environments. Selecting the right vendors, embedding the Al platform into the
overarching enterprise architecture (Ettinger 2025), and designing the architecture for large
enterprises is a highly complex process (Ismail et al. 2025, Eken et al. 2024), but crucial for Al

adoption in engineering.

On-Premises

/ Cloud

Reporting
& Service
Layer

orting
,‘vice

N

er

=

Data Data Storage Layer
Ingestion
Layer
Data Modelling Layer
Curation
Layer [ Training Pipeline ]
[ Testing Pipeline ]
[ Deployment Pipeline ]
\ Monitoring Layer

=4

Figure 8: High-Level Al Platform Architecture

Figure 8 shows a high-level architecture of a central Al platform with the most important layers.
With the ingestion of data (see key capability interoperability), data is fed into the platform and
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then processed in the curation layer using preparation, extraction and transformation
techniques. The processed data is stored in appropriate formats across suitable databases
(polyglot storage) and is readily available for direct input into the models. The modelling layer
includes containerized pipelines for training, testing, and deploying the various Al models. In
the monitoring layer, the performance of the Al models is continuously assessed, and
appropriate actions are taken in case of performance degradation. The reporting & service layer
serves as the interface to the user, presenting the results of the model applications through
visualizations such as dashboards.

Poor Al platform architecture decisions can have severe consequences and jeopardize the
success of the entire engineering Al adoption. Furthermore, cybersecurity concerns must be
addressed, ensuring that company data and the associated intellectual property are
continuously protected (Admass et al. 2024). This is especially critical in highly regulated
industries or when handling data that directly has impacts on the company’s competitiveness.
In such cases, the question often arises whether sensitive data should be processed in cloud
environments or whether on-premises solutions are the better choice (see also key dimension
federated governance). Based on four pillars (see Figure 9), we outline the key capabilities that
should be considered in designing the Al platform and the potential implications of various
design decisions.

Al Platform

Cloud vs. On-
Premises

AlOps

Flexible deployment for
Al workloads

Balance between cloud
scalability and on-
premise data control
Hybrid and multi-cloud
strategies

Consistent runtime
environments for
pipelines across
lifecycle

Orchestration at scale

Decomposition into
microservices

Modelling
Open Source vs. Non
open Source
SLMvs. LLM
RAG vs. Finetuning

Data Storage

Tailored storage
consisting of data lakes,
warehouses and meshes

Vector stores and
unstructured data
retrieval
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Figure 9: Pillars of Al Platforms in Engineering Al Landscapes

Cloud vs. On-Premises: For engineering enterprises aiming to leverage Al at scale, the
choice between on-premises and cloud-based platforms is more than a technical
decision. It is a strategic consideration with long-term implications. Al workloads,
particularly in product development contexts, are characterized by high data volume,
velocity, and heterogeneity. As Theodorakopoulos et al. (2024) highlight, many on-
premises infrastructures struggle to scale effectively under these conditions. In
contrast, cloud environments offer dynamic scalability, enabling enterprises to process
and analyze large, diverse datasets without investing in hardware expansion. When
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assessing the trade-offs between cloud and on-premises deployments, enterprises

should consider the following dimensions:

e Security & Compliance: On-premises solutions offer more direct control, while
cloud providers offer certified compliance solutions but require trust in external
parties.

e Cost: On-premises solutions require significant upfront investment and
maintenance. Cloud follows a pay-as-you-go model (laaS, PaaS), which scales with
usage but may become costly over time.

e Performance: On-premises solutions can reduce latency for real-time systems.
Cloud offers powerful hardware on demand but may suffer from network-induced
delays.

e Scalability & Availability: Cloud platforms provide elastic scalability and built-in
redundancy. On-premises environments are slower to scale and require manual fault
tolerance measures.

A common concern among enterprises is the risk of vendor lock-in when committing to
a single cloud provider. To mitigate this, enterprises can follow a multi-cloud approach
that distributes services across different platforms, increasing resilience and
operational flexibility (Dai et al. 2025). Moreover, the emergence of hybrid architectures,
combining on-premises servers, edge computing, and cloud platforms, provides
engineering companies with new levels of freedom to align technical needs with
strategic priorities.? One of the most promising paradigms in this context is Federated
Learning (FL), which allows Al models to be trained across distributed data sources
without centralizing the underlying data. Yao et al. (2022) and Zhan et al. (2025) describe
FL frameworks in which sensitive data remains on-premises or at the edge, while only
encrypted model parameters are exchanged with the cloud. This method respects data
sovereignty, minimizes bandwidth usage, and enables the training of models across
heterogeneous environments. It is particularly effective in addressing latency,
computational constraints, and system reliability.

In practice, the decision between cloud, on-premises or hybrid infrastructures should
reflect the nature of the Al workload and the strategic priorities of the organization. On-
premises implementations are best suited for environments where Al is tightly coupled
with proprietary hardware and low-latency, real-time inference is essential, or where
data sensitivity (e.g. in highly regulated industries) prohibits external transmission.
Conversely, cloud-based solutions are recommendable for enterprises that need to
support variable workloads and rapidly train and deploy new models.

2. AlOps: To successfully adopt Al at scale, engineering companies must go beyond
isolated Al use cases and build robust infrastructures and architectures (see Figure 8)
for development, deployment, and monitoring. AlOps, which represents the fusion of Al
and DevOps, provides exactly that foundation. AlOps enables scalable and secure ML
workflows, offering automation, standardization, and traceability across the entire
lifecycle. While not yet widely implemented in industry (Faubel & Schmid 2024), AlOps
will be essential for engineering companies seeking to operationalize Al effectively.
Rooted in CI/CD principles, AlOps emphasizes microservices, containerization, and
orchestration to ensure modularity, scalability, and reliability (Kreuzberger et al. 2023).
It also plays a crucial role in protecting against security risks such as data leakage,

2 See Loconte et al. (2024) for a comprehensive framework on hybrid industrial Al architectures
involving 10T, edge, and cloud layers.
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poisoning attacks, and systemic vulnerabilities (Dai et al. 2025). In practice, however,
AlOps adoption varies significantly. Different levels of technical expertise, even within
the same organization, influence how workflows are designed and operated (Rzig et al.
2024). Success depends not just on tools, but also on organizational alignment, training,
and culture (Mehmood et al. 2024; Faubel & Schmid 2024).

With the rise of GenAl and LLMs, LLMOps has emerged as a specialized extension.
Compared to standard ML or DL deployment, LLMOps must address greater compute
and storage requirements, while ensuring scalability and responsiveness (Pahune &
Akhtar 2025). Although still at an early stage of maturity (Borovits et al. 2025),
companies are advised to invest early in LLMOps expertise to stay ahead of the curve,
since AlOps and increasingly LLMOps are becoming strategic capabilities for
engineering organizations aiming to industrialize Al development and deployment.

Model Selection: The selection of suitable Al models for engineering applications is
both a technical and strategic decision. Engineering tasks are inherently diverse, from
text- or code-based artifact generation (requirements, test cases & scripts, release
notes) to 3D data processing and generation for CAD or simulation models. An overview
of (selected) commonly used Al models in engineering contexts is presented in Table 1.
In the last years, transformer-based LLMs have emerged as powerful tools capable of
interpreting, generating, and reasoning over multimodal engineering data, including
text, code, images, and time series. These models increasingly act not as isolated
systems, but as components within Agentic Al ecosystems that collaborate to solve
complex engineering tasks.

Table 1: Selected Al Models Typically Applied in Engineering Use Cases

Description Engineering Use Cases

Large/Small
Language Model
(LLM/SLM)

Convolutional
Neural Network

Graph Neural
Network (GNN)

Physics-Informed
Neural Network

Conventional ML
algorithms
(classification)

Requirement generation

T:canscfjormer-gfased rr(;odels Capable Test case generation
of understanding and generating Release note generation
natural language

Text-2-CAD

Defect detection in XilL testing
CAD/simulation model
classification

Deep learning model specialized in
processing high-dimensional data
such as images or time series

BOM analysis

Dependency and traceability
analysis of RFLPT? artifacts

Deep learning algorithm designed to
operate on graph-structured data

Neural networks that incorporate
physical laws (e.g., partial differential
equations) as constraints

Surrogate modelling for
FEM/CFD simulations

Different conventional ML algorithms
such as random forest or support
vector machines for classification
tasks

Different conventional ML algorithms ~ Parameter prediction based on

Artifact property classification
Duplicate or inconsistency
detection

Conventional ML
algorithms
(regression)

such as multilayer perceptron,
decision tree or support vector
regression for regression tasks

CAD/simulation data
Effort and performance
estimations

8 Requirements, Functional, Logical, Physical, Test.
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As the codification of engineering knowledge accelerates, the role of LLMs and multi-
agent systems is expected to grow. The future lies in orchestrating collaborative
reasoning chains between (cloud-based) LLMs and on-premises-deployed Small
Language Models (SLMs). In this paradigm, LLMs handle abstract, high-level reasoning
tasks while SLMs execute context-specific operations at the device level. This hybrid
architecture not only reduces latency and cost but also aligns with the distributed
nature of industrial systems (Li et al. 2025d). Model size plays a crucial role in this
division of labor. LLMs, with billions of parameters, offer generality and adaptability
across domains. SLMs, by contrast, typically range from a few million to several hundred
million parameters and are optimized for edge deployment on on-premises hardware,
mobile devices or microcontrollers. As shown by Subramanian et al. (2025), while SLMs
may lack the broad generalization capabilities of LLMs, they often outperform them in
narrow, domain-specific tasks due to their efficiency, lower computational demands,
and reduced inference costs. This suggests that smaller models are not a compromise,
but a strategic advantage when deployed appropriately.

Beyond technical trade-offs, organizational considerations are increasingly shaping
model selection. Issues of compliance, control over proprietary data, and risk
management are prompting many companies to turn to open-source models that can
be deployed on-premises and fine-tuned to meet domain-specific needs. One
prominent example is DeepSeek, an open-source LLM that has demonstrated
competitive performance with leading proprietary models like OpenAl’s GPT or Google’s
Gemini, particularly in specialized tasks. DeepSeek not only allows fine-grained
customization but also supports efficient domain adaptation (Guo et al. 2024; Rahman
et al. 2025). Injecting domain-specific knowledge into Al systems remains a top priority
for industrial users (Lee & Hu 2023). This challenge raises a fundamental decision point:

Should companies rely on out-of-the-box general-purpose foundation models, apply
transfer learning for task-specific fine-tuning, build Retrieval-Augmented Generation
(RAG) pipelines to supply contextual data dynamically, or train models from scratch?

In most industrial scenarios, end-to-end training of LLMs is not a viable option due to
data scarcity and high resource demands. As such, hybrid strategies combining RAG,
fine-tuning, and specialized SLMs deployed on-premises represent the most promising
way forward. In principle, each use case should be analyzed in detail to determine which
model is best suited to the specific problem and in many cases, the use of LLMs can be
avoided. Some engineering applications can be effectively implemented using other ML
or DL algorithms that require significantly less computing power and lower data
volumes.

4. Data Storage: Modern engineering departments produce large amounts of
heterogeneous data, encompassing structured formats such as simulation outputs and
measurement data, as well as unstructured sources like design documentation and
research notes. Efficient polyglot storage architecture is essential to unlock the
potential of such data for analytics, monitoring, and Al-driven decision-making.
Traditional architectures like data warehouses and data lakes have served distinct
purposes. Data Warehouses are designed to integrate structured, cleaned, and pre-
processed data using ETL pipelines, enabling consistent reporting and historical
analysis. In contrast, Data Lakes ingest both structured and unstructured data in its raw
form via ELT pipelines, deferring transformation to query time and thus offering more
flexibility for diverse analytics tasks (Azzabi et al. 2024). However, enterprises are
increasingly facing a trade-off between the structured reliability of warehouses and the
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flexible access patterns of data lakes (Dai et al. 2025). This has led to the emergence of
the lakehouse paradigm, which combines the advantages of both models. As described
by Armbrust et al. (2021), lakehouses retain low-cost, open file formats and avoid data
duplication and staleness, while supporting SQL-based analytics and Al workloads
within a unified platform. Lakehouses aim to simplify complex architectures by
consolidating batch and streaming data pipelines, minimizing technology
heterogeneity, and eliminating redundant data movement between systems (Schneider
etal. 2024). They must meet rigorous requirements: consistent storage formats, support
for CRUD* operations across all data types, relational tabular structures, a declarative
query language, consistency guarantees, and task-isolated processing. Moreover, direct
data access and unified batch-stream processing capabilities are crucial for enabling
advanced Al workflows.

In today’s increasingly complex engineering tool landscapes and Al platforms, the
concept of polyglot storage architecture is becoming a necessity rather than a choice.
As outlined by Kasper et al. (2024), storing all product lifecycle data in a single,
monolithic database is neither scalable nor efficient. Instead, polyglot persistence
enables a multidimensional representation of product data across various views
(RFLPT), while optimizing performance, scalability, and data accessibility. This is in line
with the decentralized data architecture based on the data mesh concept
(Goedegebuure et al. 2024). Corresponding databases at domain and tool level thus
represent the authoritative single source of truth (Bone et al. 2018, Kwon et al. 2020)
and allow the higher levels (Al platform, context modules) to access this data in real
time.

In summary, a centralized Al platform is essential for engineering enterprises to efficiently
develop, deploy, and monitor Al use cases by providing scalable computing, storage, and
containerized environments integrated into the overall enterprise architecture. Its success
depends on robust design decisions across four pillars ensuring scalability, security, and
effective Al adoption in complex engineering landscapes.

Industry Insight into Building a Scalable Cloud Data Platform

The client, a large industrial manufacturer, had factory sensors generating
valuable data that remained siloed in a fragmented on-premises setup, creating
bottlenecks and slowing innovation. Growing data volumes overwhelmed
legacy systems, making it difficult to scale analytics efficiently, prompting the
adoption of a cloud-based, scalable architecture for real-time data processing
and Al-driven use cases like predictive maintenance.

Guido Schmutz
The new data platform, built on a modular data lakehouse design, integrated Senior Data Architect
open-source technologies such as Apache NiFi, Kafka, Spark, Airflow, Trino, Accenture

and S3 object storage, all orchestrated on Kubernetes. This architecture
supported elastic scaling, reproducible deployments, and unified access to
sensor and enterprise data, providing a strong foundation for operational
analytics and Al workloads.

The implementation proved that a modular, cloud-native architecture can
deliver agility and scalability for industrial Al. Key lessons included the need for

strong data quality management, clear data contracts, and close collaboration Dr. Martin Wunderli
between data and operations teams. Remaining challenges include optimizing Head of Modern Data
real-time inference workloads and improving end-to-end observability across Platforms
data pipelines. Accenture

4 CRUD: Create, read, update and delete.
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Context Management

To fully exploit the potential of Al in product development, it is necessary to provide models
with holistic access to diverse product information, such as product structures, development
artifacts, documentation, development processes, legal requirements and standards and
system models. Providing context and causal cause-and-effect relationships between the
engineering domains involved in the development process is a key challenge. This challenge
can be solved by creating and continuously maintaining context modules, such as graph
databases (Kwon et al. 2020, Liang et al. 2024b), vector databases or meta-models. Both in
engineering and in subsequent phases of the product life cycle such as manufacturing (Zhou
et al. 20244, Yahya et al. 2024) and service/maintenance (Xie et al. 2024), considerable research
efforts have been undertaken in recent years to demonstrate the suitability of knowledge
graphs for knowledge linking at an elevated meta-level. Product-related information that was
originally available in unstructured formats such as documentation, emails, or regulations can
now be stored in vector databases and made accessible to LLMs for RAG applications (Xu et al.
2025c). For end-to-end application of Al in the product development process, it is important to
provide system-wide context and formalize the product development process in such a way
that cross-domain processes, dependencies, and interactions become machine-readable. The
definition and stringent application of semantics and ontologies, as well as the transformation
of a document-centered development process toward MBSE (Zhang et al. 2025e), formalize
product development and are prerequisites for the scalable application of Al across domain
boundaries.

oo“text Managemen’

Retrieval-Augmented
Generation

Knowledge Graph

LLM-augmented * Vector Embedding
Knowledge Graph + Feedback loops and
Construction user interaction
Graph Database « Unstructured Data
Triples Generation Handling

Model-based Systems Linked & Traceable
Engineering Product Data

System wide * Ensuring Machine-
Traceability Creation Readability
Formalization through « Unified terminology
Metamodels +  Semantics & Ontologies
Complexity

Management

Figure 10: Pillars of Context Management in Engineering Al Landscapes

In the framework shown in Figure 3, context management serves as the brain of Al applications,
as it links product knowledge and maps the interdependencies and impact chains of artifacts
and other product-related information. Context management represents a control layer at
metadata level and aims to provide context and cause-effect relationships between artifacts
and product information, drastically improving the knowledge extraction, reasoning and
orchestration capabilities of LLMs. It is therefore recommended that the support of vector and
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graph databases is considered when selecting the Al platform and corresponding storage
platforms (Harby & Zulkernine 2025). Figure 10 shows the pillars of context management in
engineering Al landscapes, which are explained in more detail below.
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Knowledge Graphs: Knowledge graphs consist of nodes (entities) and edges (relations)
that structure knowledge in the form of subject-predicate-object triples (Liang et al.
2024a). They integrate information from various sources, semantically link related
concepts, and enable context-aware queries and inferences. Ontologies are often used
to formally define the meaning of nodes and relations, allowing machines to interpret
the data (Zou 2020). While until a few years ago a lot of manual work was required by
experts to create domain-specific KGs (Hur et al. 2021), generative approaches and
especially LLMs, are now able to process big data and automatically create (multimodal)
KGs based on heterogeneous data sources (lbrahim et al. 2024). The construction of
KGs in engineering is particularly challenging, as domain knowledge such as
engineering principles or industry-specific best practices and regulations must be
embedded in the KG and the underlying data is stored in a wide variety of source
systems (Liang et al. 2024b, Liang et al. 2025). Furthermore, various measures must be
considered in the KG construction phase, such as efficiency (computing time required),
costs (number of tokens used) and KG quality (e.g. proportion of isolated entities) (Xiao
et al. 2025).

Figure 11 shows an exemplary LLM-augmented KG construction and retrieval pipeline as
well as a simplified KG specialized for engineering. KG construction is based on
heterogeneous data sources that draw on artifacts from the engineering toolchain, but
also use additional information from documentation, regulations, internal wikis and
many other data sources. Well-maintained metadata that documents the validity of the
extracted information and artifacts for specific products, configurations and variants is
fundamental to extract valid relations for the KG construction. In the first step of the KG
construction pipeline, data is transformed, and relevant text sections are extracted. The
extracted text sections are then further processed by an LLM in the LLM-augmented KG
preparation step, which has the task of recognizing and extracting relevant entities and
relations between entities and merging them into valid triples. This creates the
simplified product KG shown in Figure 11, which depicts the relationships between
engineering artifacts and further product information.
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Figure 11: KG Construction and Retrieval Workflow based on Hoang et al. (2025) adapted to an
Engineering Application

The constructed KG is then stored in a database. Relational databases are suitable for
small graphs (e.g. Hoang et al. 2025), however when memory requirements increase,
the switch to graph databases is unavoidable for performance reasons (lbrahim et al.
2024). After the graph has been constructed, it is transformed into a vector embedding,
making it accessible for LLMs and similarity checks with prompts. If an engineer sends
a prompt to the LLM, the content of the KG is compared with the prompt, and the
relevance of triplets is evaluated based on their similarity to the prompt. Triplets with
high relevance are added to the prompt to provide the LLM with product and domain-
specific context. Such an approach is called GraphRAG (Han et al. 2024b, Zhu et al.
2025, Peng et al. 2024) and is particularly effective for highly specific tasks where the
LLMs need to draw on (domain-specific engineering) knowledge that was not provided
to them during the training process (Zhang et al. 2025c). Different measures must also
be considered for the retrieval pipeline. The most important measures are the time to
create the vector embedding (indexing time) and the average retrieval time (Xiao et al.
2025).

Another promising approach is the use of DL algorithms to evaluate the relevance of
triplets or combinations of triplets. GNN-RAG, i.e. the use of GNNs to identify highly
relevant subgraphs and triplet combinations, enables LLMs to provide advanced
reasoning capabilities (Mavromatis & Karypis 2024). The integration of agents that
interact with KGs multiple times and optimize their actions based on reinforcement
learning to retrieve the most suitable information from the KG (Luo et al. 2025) is a
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further interesting research field. In the future, this can be a key for complex Product
KGs that need to map different products, configurations, variants and the interaction of
mechanics, hardware and software to identify complex relationships between artifacts
and other product information, allowing conclusions to be drawn.

In addition to automated construction and retrieval, dynamic adaptations of KGs are an
important feature to qualify for scalable use in engineering. This includes managing the
KG and its vector embeddings in AlOps pipelines, which are dynamically adjusted as
new engineering artifacts are created, and new product-related information is added
(Liang et al. 2025). In particular, the introduction of Temporal KGs, which give
information recorded in the KG a temporal reference and thus ensure the temporal
validity of information (Choi & Jung 2025, Wang et al. 2024b), can be seen as a way of
mapping change and configuration management processes in the future. The need for
dynamic KG updates has already been recognized in the manufacturing sector (Wan et
al. 2024) and prototypically implemented using the example of physically decoupled,
collaborative robots (Bai et al. 2024). Another research focus is the continuous
evaluation of the quality of KGs as well as the quantification of incompleteness and
uncertainty. Existing (engineering) data is imprecise, incomplete and ambiguous, which
is why these properties are also transferred to KGs. In addition, retrievals from KGs are
also subject to uncertainty, which is why Mishra et al. (2024) call for the integration of
uncertainty modules in KGs that highlight incomplete data areas, quantify knowledge
gaps and then dynamically adapt the graph. The continuous assessment of
uncertainties in retrievals from KG is also currently the subject of research (Ni et al.
2025a) and should be considered in future implementations in the monitoring layer of
the AlOps pipeline.

Industry Insights into Fixed Entity Architecture
for GraphRAG solutions

In developing performance optimized knowledge-based Al solutions, the initial
approach utilized the LLMs based GraphRAG technique, specifically Microsoft
GraphRAG. This approach demanded considerable effort to construct a graph,
particularly with extensive data sets. It heavily relied on LLMs, lacked integration
with domain ontology, and required substantial deduplication and post-
processing. The main challenge was to devise a more cost-efficient, simpler, and
production-friendly method that also improved domain comprehension.

The proposed method, named Fixed Entity Architecture (FEA), merges standard Irina Adamchic
RAG with domain ontology. FEA employs a layered graph structure, where data  GenA| Expert & Graph
layers are logically separated. While GraphRAG excels as a standard RAG Architect
approach by its nature, FEA simplifies the construction and utilization of graphs for e e
specific GenAl applications. An extension of FEA, called NLP-driven GraphRAG,
supports building layered graphs even in the absence of a predefined ontology. This
involves text chunking similar to standard RAG, but with entities extracted and
linked through triplets, thereby enhancing the traditional RAG model by
incorporating entity relationships and logical connections.

The adoption of FEA resulted in a more robust and easier-to-develop graphs and
query systems, improved domain understanding, and improved RAG performance
through entity linkage and business domain logic. Feedback from implemented Bernhard Wieland
solutions showed notable gains in both efficiency and quality. Key takeaways
highlighted the value of combining domain ontology with standard RAG methods
and the effectiveness of NLP-driven GraphRAG in advancing the RAG framework.

GenAl Expert
Accenture

2. Retrieval-Augmented Generation: To support RAG use cases, lakehouses are evolving
to incorporate vector databases, which require high responsiveness and contextual
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integrity. RAG's strength lies in making data accessible to Al systems that, just a few
years ago, were largely not processable. Similar to the construction of KGs, unstructured
data such as text is transformed into embeddings for RAG applications, which are then
stored in vector databases. Using similarity searches between the prompt and the
contents of the vector database, particular relevant information can then be extracted
and incorporated into the prompt, providing LLMs and agents with context-rich
information. This significantly increases the quality of LLM responses and prevents
hallucinations (Zhao et al. 2024). Design decisions such as chunk size and prompt
templating significantly affect retrieval quality (Li et al. 2025b), while system integration
and failure point identification (Barnett et al. 2024) remain critical for operational
reliability. Embedding RAG workflows in AlOps pipelines and connecting them to
internal and external data sources ensures that lakehouses serve not only as
repositories, but also as enablers of intelligent, context-aware applications.

RAG applications are now already common practice in the development of industrial Al
use cases and scientific publications related to engineering. Numerous engineering Al
publications have already demonstrated that providing domain-specific context via RAG
and GraphRAG applications leads to more performant LLM applications. Examples span
all engineering domains, such as requirements management (Masoudifard et al. 2024,
Hey et al. 2025), architecture design (Hanke et al. 2025), CAD design (Xiong et al. 2025),
software engineering (Strittmatter 2025), simulations (Pandey et al. 2025, Feng et al.
2025), test case generation (Wang et al. 2025a), product documentation (Tao et al. 2024,
Pu et al. 2024), and compliance assurance (Sovrano et al. 2025).

3. Model-based Systems Engineering: MBSE represents the paradigm shift from
document-centric engineering toward formalized, model-based approaches by
introducing structured and standardized system models that enhance consistency,
communication, and collaboration across domains and life cycle phases. Unlike
traditional documentation, MBSE provides a unified modeling environment in which
requirements, logical and physical architectures, simulation behaviors, and
optimization objectives are coherently represented and continuously refined across
domain boundaries (Zhang et al. 2025e). A major milestone in this evolution is the
emergence of SysML v2, which introduces a new metamodel and textual notation
designed for improved semantic expressiveness and interoperability across
engineering tools (VaicenavicCius et al. 2025). SysML v2's standardized API enables
seamless data exchange and interaction between domain-specific tools and the system
model itself. This standardization allows external applications to query, update, or
extend the SysML metamodel, creating the foundation for machine-readability and Al
compatibility.

Building upon this foundation, MBSE establishes a central, system-wide metamodel that
links metadata to domain-specific specifications. This integration allows for continuous
verification and validation (Cibrian et al. 2025), as well as automated compatibility
checks throughout the engineering lifecycle. Such model-centric architecture paves the
way for Al and agentic Al systems to gain a holistic understanding of the overall system.
These Al agents can interpret system structures, processes, and boundary conditions,
and autonomously delegate well-defined development tasks to subordinate agents
operating within domain-specific tools or using domain-specific languages (see also
Section Outlook). MBSE therefore provides a system-wide context that will enable Al
applications to understand and explore the overall system in greater depth before
development tasks can be orchestrated at subordinate system levels.
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The integration of Al into MBSE has emerged as a research focus in recent years (Poulsen
et al. 2025). Zhang et al. (2025f) outline a research roadmap that illustrates how GenAl
can support model development, model management, and model comprehension. Early
studies demonstrate that LLMs are already capable of generating SysML v2 models
directly from textual descriptions, thereby automating parts of the system modeling
process (Longshore et al. 2024; Johns et al. 2024). These developments highlight the
potential of combining formalized system modeling with Al-driven reasoning to
accelerate system design, ensure traceability, and establish the digital foundation for
intelligent, adaptive engineering ecosystems.

Linked and Traceable Product Data: A significant portion of time is spent by engineers
searching for product information relevant to their tasks (Chandrasegaran et al. 2013),
which is why the demand for linked and traceable product data is higher than ever.
Although modern PLM software offers sophisticated solutions for PDM (Eigner 2021), the
solutions reach their limits as soon as the number of variants and configurations in the
product portfolio becomes unmanageable (Failla et al. 2025) and information that is not
managed in the PLM system needs to be embedded. For this reason, linking product
data and creating traceability across the entire product development process or even
product life cycle in the sense of a digital thread is of fundamental importance and offers
immense efficiency gains. This requires ontologies and semantics that describe the
interaction of product data in a standardized way (Failla et al. 2025) and form the basis
for the construction of KGs (Rys et al. 2024).

KGs are already being used in engineering for this purpose, as evidenced by several
publications. While some authors propose KGs for domain-specific linking and
traceability tasks, e.g. the similarity assessment of CAD models within large CAD
repositories (Bharadwaj & Starly 2022), functional classification of components (Ferrero
et al. 2022), knowledge retrieval from existing design data for product ideation in early
design phases (Cong et al. 2025), conversion of standards into machine-readable
formats (Luttmer et al. 2021) or model management (Ry$ et al. 2024) and model
versioning (Wu et al. 2025) in systems engineering, other authors propose cross-domain
applications. Hedberg et al. (2020) propose a lifecycle handler system that assigns an
ID to each artifact across domains and links them together via a KG. The importance of
informative metadata for each artifact is emphasized to describe the content of the
artifacts in detail and identify links to other artifacts. Kwon et al. (2020) show how they
link design (STEP format) and inspection data (QIF format) via a KG and thus establish
traceability between product design and quality assurance. Kasper et al. (2024) propose
a KG-supported concept for linking data from all phases of the product life cycle, which
can accelerate cross-domain change and quality management processes in the future
(Kommineni et al. 2024). We assume that scalable solutions will be developed in the
coming years that address cross-domain data interconnection and will be based on the
approaches described (KG, RAG, MBSE).

The need to link product data across the entire product life cycle has been known for years.
Nevertheless, scalable solutions that link data across domains and tools have not been
available. With the emergence of LLM-augmented KGs and associated retrieval and reasoning
capabilities, this is likely to change in the coming years (Liang et al. 2025). The prerequisites for
exploiting this potential are the creation of clear ontologies, (automated) creation and
maintenance of metadata and the development of expertise in KG/RAG construction, retrieval,
maintenance and uncertainty management. In this way, cross-domain development processes
in particular, such as change, configuration and release management, can be massively
accelerated and automated in the future. Emerging fields of research such as agentic context
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engineering, i.e., the integration of agents to retrieve the optimal context from heterogeneous
data sources (Zhang et al. 2025i), may further increase the performance of Al applications in
the future and show great potential, especially for domain-specific tasks.

Federated Governance

Al is entering product development at speed, drafting requirements, generating design
variants, accelerating simulation setups, and assisting integration and release (Paliwal et al.
2024). Yet organisations that scale beyond pilots share one trait: they treat governance as an
engineering discipline, not just another review meeting. In fragmented tool landscapes and
heterogeneous product domains, centralised control becomes a bottleneck, while laissez-faire
creates risk, duplication, and drift. A federated governance model resolves this tension by
combining autonomy for domain teams with shared, automated guardrails (Williams &
Karahanna 2013).

Governance is the rule set of policies, processes, roles, and metrics that keeps data and Al
assets aligned with business goals, regulation, and ethics (Otto 2011). In our framework, Data
Sovereignty, control over residency, access, and usage rights, is not a parallel construct but a
governance goal: a sovereign configuration of the overall system (von Scherenberg et al. 2024).
Sovereignty ensures that high-value data continues to flow while remaining compliant with
legal, ethical, and strategic constraints, binding datasets, models, and processes to
provenance, entitlements, and declared purposes through enforceable, machine-readable
policies. Figure 12 illustrates key elements of federated Al governance in product development
and other Al systems.

?ede‘ated Gover"a"oe

Organisational & Platform Governance,
Decision Gover A & Usage

Human Accountability « Scaling compliance
Domain teams own guardrails
end-to-end delivery « Ensure jurisdictional and

Machine roles for contractual boundaries
agentic Al are respected by design

« Sandboxing agentic Al

Model & Use-Case Governance

A Data Governance
and Regulatory Compliance

Model lifecycle « Data quality and
oversight semantics
End-to-end audit trails « Shared vocabulary /
Continuous oversight ontologies

for agentic Al * Read / write scopes for

agentic Al

Figure 12: Pillars of Federated Governance in Engineering Al Landscapes

Federated governance spans the full product-development stack, as shown in Figure 3. At the
core lies the context management, which captures lineage, usage, and audit evidence, serving
as the metadata backbone for Data Governance. Here, sovereignty profiles and traceability
ensure that every dataset, requirement, simulation, or release artefact is auditable and reusable.
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Surrounding this core is the Al Platform, where Platform Governance enforces compliance by
design through shared runtimes, orchestration, observability, and policy enforcement points.
On top sits the Interoperability layer, providing the interfaces, APlIs and communication
protocols that link domains. This layer is shaped by Model & Use-Case Governance, which
defines how prompts, models, and evaluations are integrated, monitored, and approved while
remaining compliant with sovereignty constraints. The next layer Data Quality in the
engineering toolchain is where domain teams create and curate data products, designs, and
simulations, linking them back into the context modules under governance guardrails. Finally,
the outermost layer of Federated Governance reflects Organisational & Decision Governance,
the human system of roles, committees, and accountability that binds the stack together,
ensuring that local autonomy across tools, data, and models remains aligned with enterprise-
wide sovereignty, compliance, and business objectives. To operationalise this model, federated
governance unfolds across four interdependent areas:

1. Data Governance: Data governance forms the foundation of any GenAl system by
ensuring that information entering the Al lifecycle is reliable, traceable, and compliant
with sovereignty rules. GenAl quality is bounded by data quality and semantics
(Mohammed et al. 2025), thus, data governance encompasses the management of data
quality, semantic consistency, classification, and retention, ensuring that only the
necessary and permitted metadata are exposed to higher system layers. By embedding
lineage and usage evidence in the knowledge graph, data governance establishes
transparency and accountability at source. Sovereignty is realised through dataset
profiles that encode access rights, residency, and sharing restrictions, automatically
enforced through policy mechanisms. As GenAl becomes more agentic, data
governance extends its scope to include autonomous data consumers and producers,
defining their permissions and logging every access event as a traceable action. In
doing so, it safeguards intellectual property, prevents data leakage, and enables
responsible Al development across distributed domains.

2. Model & Use-Case Governance and Regulatory Compliance: Model and use-case
governance ensures that GenAl models remain effective, compliant, and auditable
throughout their lifecycle. It manages the intake and prioritisation of use cases, defines
model cards and versioning schemes, and implements evaluation and monitoring for
performance, bias, and drift. Risk tiering aligns with the EU Al Act, while Responsible Al
principles (Accenture 2024)—human by design, fairness, transparency, explainability,
safety, accountability, compliance, privacy, and sustainability—are operationalised
through approval and monitoring processes. Sovereignty is maintained by checking
prompts, fine-tuning datasets, and RAG pipelines against sovereignty profiles to ensure
that every artefact used in model training or inference respects declared usage rights.
End-to-end audit trails document who used what data for which model, when, and for
what purpose. As Al systems evolve toward agentic autonomy, model governance
extends to continuous supervision of agents’ behaviours, defining approved roles,
enforcing decision boundaries, and ensuring human-in-the-loop checkpoints with rapid
rollback mechanisms (Kolt 2025). This way, it guarantees that innovation and autonomy
coexist with accountability and compliance

3. Platform Governance and Access & Usage Management: Platform governance
translates policy into infrastructure, embedding compliance and sovereignty
enforcement directly into the technical backbone of Al operations. It defines and
manages shared runtimes, container orchestration, vector databases, secrets
management, observability, and policy-enforcement points at both build-time and run-
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time. Through policy-as-code, it blocks non-compliant builds or deployments and
enforces cost transparency, SLOs, and golden pipelines to ensure operational reliability.
Sovereignty is preserved by enforcing data residency and segmentation through
regional clusters and runtime isolation, ensuring that jurisdictional and contractual
boundaries are respected by design. All access and usage are logged continuously,
providing a verifiable record of platform activity. As Al becomes agentic, platform
governance must include sandboxing, scoped authentication tokens, rate-limiting, and
agent-aware observability—tracking decision traces and tool invocation logs to prevent
privilege escalation and unauthorised lateral movement. By codifying compliance
within the infrastructure itself, platform governance ensures that scalability and security
advance hand in hand (e.g., Hurni et al., 2020).

4. Organisational & Decision Governance: Organisational and decision governance
establishes the human and procedural scaffolding that ensures accountability,
coherence, and ethical alignment across federated teams. It defines clear roles,
responsibilities, and RACIs, creates lightweight but effective change-control processes,
and introduces oversight bodies such as Al steering committees and ethics boards to
manage high-risk approvals and cross-domain standards. Post-incident reviews, replay
sessions, and continuous training in Responsible Al, privacy, and secure development
maintain organisational readiness and trust. Sovereignty becomes a leadership KPI, with
compliance rates, audit outcomes, and data-quality metrics linked to performance
incentives. As Al agents increasingly collaborate with humans, organisational
governance expands its scope to define machine roles and supervision rules—clarifying
when must humans approve, override, or intervene and how escalations are handled
when agents face uncertainty. Through this hybrid accountability model, organisational
governance anchors the system in human responsibility while enabling autonomy at

scale.

Organisational Governance \
Domain teams own Human Machine roles
end-to-end delivery Accountability for agentic Al

9 - </>

Model / Use Case Al Platform
Development

=
-

Data Layer

Data Sovereignty

Figure 13: Governance Fabric for Al in engineering landscapes
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The areas form a single governance fabric as depicted in Figure 13. Data governance supplies
reliable, sovereignty-bound inputs to model governance, which sets policy requirements and
risk posture that platform governance enforces automatically at build- and run-time.
Organisational governance provides accountability and fast decisions when tensions arise (e.g.,
when a sovereignty profile restricts training, or a platform policy blocks deployment). The
Product Knowledge Graph is the shared backbone, linking lineage, model usage, and platform
logs including agent actions into one auditable view. These interconnections keep domain
autonomy aligned with enterprise sovereignty and compliance objectives.

In industrial applications, where complexity, regulation, and global competition converge,
governance across these four areas is infrastructure, not bureaucracy, the fabric that makes Al
safe, scalable, and competitive. Without data governance, trust in inputs collapses; without
model governance, bias and drift erode value; without platform governance, scaling breaks
under complexity; without organisational governance, accountability diffuses, and sovereignty
remains aspirational. Treating governance as an engineering discipline, which is automated,
federated, sovereignty-driven, and agent-aware, is a competitive prerequisite for the GenAl
economy.

Industry Insights into Model Governance

The EU Al Act distinguishes between different types of Al systems based on their
risk level. High-risk Al systems (e.g., systems based on personal data or targeting
critical infrastructure) are required to perform rigorous data governance activities
to provide transparency and minimize risks. These requirements include ensuring
that training, validation, and test data sets are relevant and accurate. Forinstance, Marcel Altendeitering
they should avoid bias in the data set.

Head of Department

To simplify and support the data governance activities required by the EU Al Act, Fraunhofer ISST

we utilized Al methods. Specifically, we implemented solutions for automatically
generating and analyzing metadata to enhance data lineage and track the origin of
data sets. Additionally, we implemented algorithms to detect potential biases
(e.g., using techniques for identifying feature importance).

As part of our use case, we found that Al has great potential for addressing the
data governance requirements posed by the EU Al Act. By combining multiple 0
solutions for different governance aspects, the developers of high-risk Al systems Tobias Guggenberger
can reduce the efforts for implementation. Group Lead
Fraunhofer ISST
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Stages of Al Readiness in Engineering

The framework described in the previous Section (see Figure 3) represents the foundations and
prerequisites for enabling scalable Al applications in engineering. To provide companies with
guidelines for enabling Al in their product development processes, this chapter presents a
maturity model that rates the maturity level of use cases with respect to the type of system
integration.
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Figure 14: Horizontal and Vertical Integration in Engineering Al Use Case Implementations

v

Figure 14 provides an (illustrative, non-exhaustive) overview of the creation of engineering
artifacts throughout the product development process. A distinction is made between two
types of integration in systems engineering. Vertical integration describes the successive
processing of artifacts within a domain (e.g., from unstructured requirements to system
requirement specifications to detailed hierarchical requirement models), while horizontal
integration describes the linking and traceability of artifacts across domain boundaries (Eigner
2021). These properties can also be transferred to Al use case implementations. Vertical use
cases only access data from the domain that also uses the results of the use case. Horizontal
applications access data from other domains, which requires traceability of artifacts throughout
the product development process. To assess the maturity of enterprise Al applications, the
automation levels of autonomous driving are proposed in the literature (SAE 2014). These divide
the automation levels for Al applications in engineering into six discrete stages, ranging from
fully manual engineering without Al use (level 0) to fully autonomous Al engineering (level 5)
(Bernijazov et al. 2025).

Figure 15 shows the different levels for vertical (top) and horizontal (bottom) Al integrations and
describes each level. The maturity levels of vertical integration refer to the degree of autonomy
of Al applications regarding the performance of engineering tasks within a development
domain. In contrast, the maturity levels of horizontal integrations refer to the degree of
autonomy regarding the networking and traceability of artifacts from different domains. While
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maturity level O does not involve any application of Al, the degree of autonomy increases
successively with each maturity level until, at level 5, Al can perform domain-internal (vertical)
and cross-domain (horizontal) tasks completely autonomously.

Level O Level1 Level 2 Level 3 Level 4 Level 5
Manual Al-Assisted Al-Supported Semi-A A A
c Engineering E ing Decision Making Engineering Task Execution Al-Engineering
o -
s c ; Al carries out
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g g e specific specific development complete e
0 subtasks decision making subtasks domain tasks P
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.9_, S Domain Al provides Al provides i g Al provides .
1N} " e multiple e Al provides
) processes basic additional o optimized 3
> 3 ; v solutions, . E2E solution,
performed suggestions, information, p solutions, i
, s engineers 2 engineers
manually engineers engineers engineers
k 5 i select and X approve.
without Al. integrate. utilize. Y refine.
refine.
Level 2 Level 3 Level 4 Level 5
I-Supported Semi-A A A
ision Making Engineering TaskE: i Al-Engi ing
Al recommends | Al automates Al links and Al links data
No Al Al assists data | data linking and | data linking and generates across
involvement linking development | creates specific specific data domains
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Affected datais| Affected data
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Figure 15: Stages of Vertical and Horizontal Al Readiness in Engineering

The automation levels serve as a basis for assessing the maturity of the use cases in the
following Section. Various publications from the literature are analyzed and classified according
to their vertical and horizontal maturity levels.
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In this Section, we present several Al use cases across the six development domains in the V-
model as well as cross-domain use cases. For each of the six development domains, three
promising use case classes are presented that exemplify the current state of the art as reflected
in the scientific literature. These examples provide a concise overview of the application of Al
in the respective development domain and are intended to support C-level executives and
engineers in identifying high-priority Al applications. In addition, key challenges are analyzed
that currently hinder further increases in the automation levels, as defined by the maturity
model shown in Figure 15. The selection of use cases does not claim to be exhaustive but instead
deliberately focuses on high-value approaches that have already led to significant progress and
innovation in literature.® The use cases are summarized at the end of this Section, cross-domain
applications are presented, and they are evaluated according to their vertical and horizontal
maturity levels in line with the previous sections (see Figure 15).

Figure 16 illustrates the V-model for the development of mechatronic and cyber-physical
systems according to VDI (2021) and provides an overview of the engineering domains
introduced in the following Subsections.

Requirement Release

Domain 6: Compliance &
Documentation

Domain5:
System
Testing / V&V

Domain1:
il Requirement
----------------- Engineering

Mechanics
E/E
Software

Product Design

________________ " Domain3: System Design

Modelling & Simulation

Domain 4: System Simulation

Figure 16: Overview of the six engineering development domains of the V-model

5 Further engineering use case proposals and summarizations are presented by Bleisinger &
Eigner (2025), Steffen et al. (2025) and Liang et al. (2025).
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‘ Requirement Engineering

The integration of Al, and specifically LLMs, into requirement engineering is transforming how
engineering teams elicit, specify, and refine requirements throughout the product development
lifecycle (Arora et al. 2024a). Traditionally a manual and therefore error-prone process,
requirement engineering can benefit in the future from Al's capability to process vast volumes
of unstructured and semi-structured information (Cheng et al. 2024).

Al models are capable of ingesting diverse inputs such as natural language requirements,
technical documentation, programming code, examples, and sketches (Hemmat et al. 2025).
From these, they can generate outputs that include (software) requirements and specifications,
code and pseudocode, and models such as UML or SysML diagrams. The key benefits of
applying Al in requirement engineering include enhanced quality and consistency of
requirements, accelerated elicitation and management processes, improved traceability and
connectivity between requirements, and the generation of artifacts that support downstream
engineering tasks (Hemmat et al. 2025).

Al applications in requirements engineering can be grouped into three main categories of tasks
as structured similarly by Hemmat et al. (2025) for hardware requirements and Norheim et al.
(2024) for software requirements:

¢ Requirement Generation, where Al assists in drafting consistent and structured
requirements and requirement models from unstructured inputs, such as stakeholder
inputs or regulatory documents,

¢ Requirement Optimization, which focuses on evaluating and optimizing requirements
for clarity, completeness, consistency, and compliance with formal language standards
or domain-specific guidelines,

¢ Requirement Analysis, where Al is used to track dependencies, identify conflicts, and
align requirements with each other and with downstream artifacts, such as MBSE
models, functional and logical models or test cases.

Requirement Generation

One of the most immediate applications of GenAl is in the generation of requirements from
unstructured stakeholder input, such as interviews, notes, or informal descriptions. By
leveraging LLMs, this input can be transformed into well-structured, formalized requirement
statements that align with engineering standards and stakeholder demands. This not only
accelerates the elicitation process but also reduces the risk of overlooking critical stakeholder
needs. Furthermore, GenAl can iteratively refine initial drafts through interactive dialogues,
allowing stakeholders to clarify and validate requirements in real time. Ronanki et al. (2023)
demonstrate that LLMs like OpenAl’s ChatGPT are effective in eliciting functional and non-
functional requirements through conversational prompts. Similarly, Nouri et al. (2024) show that
safety requirement elicitation for autonomous driving systems can be significantly accelerated
using LLMs, providing a structured and complete set of requirements faster than traditional
manual methods. Voria et al. (2025) introduce RECOVER, a pipeline that structures stakeholder
dialogue and drafts system requirements using Llama 2.
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Requirement Optimization

Al supports optimization and quality assurance by detecting issues like ambiguity, redundancy,
inconsistency, and syntactic errors. These models can evaluate requirements against
predefined quality criteria and suggest rewordings that improve clarity, verifiability, and
completeness. This leads to fewer misunderstandings and rework in later development phases.
Additionally, Al can be used as a first-pass reviewer, enabling engineers to focus their manual
reviews on higher-level content validation rather than basic linguistic or structural issues. Bashir
et al. (2025) demonstrate how LLMs can be used to detect and explain ambiguities in
requirements from the railway industry. Lubos et al. (2024) report that LLMs can reliably identify
quality flaws in software requirements and suggest alternatives that are more precise, verifiable,
and appropriate. Fantechi et al. (2023) further demonstrate that LLMs can detect internal
inconsistencies across requirement sets, expediting the refinement process. Saleem et al.
(2025) show that prompt-engineered LLMs can effectively classify requirements into functional
and non-functional categories, improving consistency and traceability. Gartner & Gohlich
(2024) present an LLM-based approach to optimize automotive requirements regarding
ambiguity, redundancy, consistency, clarity and compliance. However, these studies stress the
necessity of expert validation and human-in-the-loop approaches to ensure reliability.

Requirement Analysis

Beyond textual interpretation, Al facilitates requirement traceability creation by extracting
knowledge from requirements and making it usable for downstream engineering tasks. This
includes identifying relationships between requirements, ensuring compliance with standards
and regulations, categorizing them, and linking them to relevant models, design elements or
test cases. As a result, complex requirement sets become more navigable across large-scale
projects. Moreover, the generation of structured representations, such as knowledge graphs,
supports traceability and consistency across different engineering domains and toolchains. Liu
et al. (2025) introduce a method for building knowledge graphs from aerospace requirements
using LLMs, which helps improve manageability and comprehension of complex systems.
Similarly, Tikayat Ray et al. (2024) demonstrate how NLP algorithms can understand and map
interdependencies between requirements in the aerospace domain. Hassine (2024) expands on
this by showing how LLMs can be used to create traceability links between requirements and
goal models. Using the example of software requirements, Masoudifard et al. (2024) show how
specifications from regulations and standards can be considered to align compliance with
corresponding software requirements.

Further publications, e.g. FuchB et al. (2025a & 2025b), Niu et al. (2025), Hey et al. (2024 &
2025), examine the possibilities of LLMs for automated traceability creation and validation
between requirements and other engineering artifacts. This includes

e the automated creation of system architectures in the context of MBSE (Akundi et al.
2024, Meng & Ban 2024, Bonner et al. 2024),

e the accelerated design of CAD models (Li et al. 2025a),

e the generation of simulation setups and parameters (Lebioda et al. 2025),

e the generation of software code (Han et al. 2024a)

e as well as the automated creation, execution and verification of test cases (Alagarsamy
et al. 2024, Reinpold et al. 2024, Ferrari & Spoletini 2025).
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These publications underline both the growing interest in research and the industrial relevance
of requirement traceability along the product structure and along the product development
process.

Despite these promising use cases, several challenges currently constrain the widespread Al
adoption in requirements management.

o Data-related challenges include the limited availability of requirement-specific
datasets, inconsistent annotation standards, and inadequately defined requirement
engineering use cases (Norheim et al. 2024). These gaps hinder model training,
benchmarking, and reliable evaluation across domains.

¢ Methodological and organizational challenges include the development of new
requirement engineering practices to incorporate Al tools, explainability of Al-
generated outputs, and the need for human-centric evaluation of requirements (Habiba
et al. 2024). Additionally, the misalignment between Al developers and engineering end-
users introduces further complexity in tool integration and practical application.

¢ Technical challenges, as noted by Hemmat et al. (2025), revolve around ensuring the
completeness and quality of Al outputs, handling code and test generation effectively,
managing input prompt design, and maintaining structured formatting. These issues
directly impact the usability and trustworthiness of Al-generated requirements artifacts.

To address these challenges, dedicated research efforts and the development of industrial
applications are needed. Methodological and organizational challenges require new
approaches to effectively integrate GenAl into requirements engineering. Initial contributions
in this area include the framework proposed by Ahmad et al. (2023) for human-centered Al-
based requirements engineering, which emphasizes collaboration between engineers and Al
systems. Complementing this, Vogelsang and Fischbach (2025) provide practical guidelines for
applying Al to requirements engineering tasks, covering prompt design strategies, quality
validation methods, and approaches for integration into existing development workflows.

If these challenges are overcome, GenAl can significantly increase the degree of automation in
requirements engineering. Figure 17 shows the maturity levels of automated requirements
management based on the automation levels.

Level O Level1 Level 2 Level 3 Level 4 Level 5
Manual Req. Al-Requirement Al-Requirement Al Requirement Al Requirement Autonomous Regq.
Tracker Assi Decision Supporter Processor Manager Management
] Al carries out
Al assists Al supports Al automates Al takes over .
No Al - v domain
T specific specific development complete -
subtasks decision making subtasks domain tasks
autonomously
: Al provides Al classifies Al gener
Requirement Al supports g p h . Al generates LIRS
- . insightsin requirement : and
Mgmt. engineersin ; compliant, .
s ; assessing clusters and X automatically
activities are formulating or i consistent
g completeness provides adapts
performed rephrasing | e and traceable .
) or identifying templates for s requirement
fully manual. requirements. L 4y requirements.
ambiguities. req. models. models.

Figure 17: Vertical automation levels in Al-based requirements engineering applications
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Industry Insights into Requirements Engineering

Automotive suppliers often receive many customer input documents per project with
large volumes of text, ranging from 50 to 300+ pages of structured and unstructured text
across multiple files that must be analyzed to extract and classify requirements.
Normally, this responsibility is tasked to experienced systems engineers who manually
read, identify, categorize, and map relevant requirements into the supplier’s product
hierarchy. Human engineers must read between the lines to identify requirements
without keywords, or requirements irrelevant to the software domain such as those
about paint composition. This process is not only time-consuming and mentally taxing
but can also be prone to human error and inconsistencies if several engineers are
working in silos. In one past client case, we estimated the effort required to be three
engineers working full-time over three months to complete a single requirements input Dr. Modar Horani
package. Managing Director
Accenture

To address these challenges, the Accenture team has developed an agentic Al
approach leveraging Generative Al (GenAl) techniques built upon Natural Language
Processing (NLP) and reasoning models to parse input documents, identify both new
and duplicate requirements from an existing database, group related requirements, and
flag requirements needing updates or clarification based on the newly extracted input
requirements. We have prototyped this approach across several real-world datasets
and consistently demonstrated drastic time savings, reducing a task that once took
months to seconds. The results are also more consistent and less error-prone,
providing a dependable baseline for engineering teams to refine further through their
projects lifecycle.

A key insight from this use case was the implementation of the Al to reason beyond
traditional keyword-based automation features of leading requirements management
tools. The system now interprets project context against input document context,
understands the semantic structure of requirements, and performs reasoning to assess Accenture
relationships and redundancies which previously were only possible through human

judgment. This represents a paradigm shift in how engineering organizations can scale

quality and efficiency leading to decreased lead time to development with more time for

innovation.

Garrett Graham
Senior Principal
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Architecture

The development of system and discipline-specific architectures is evolving with the
integration of Al, which enables automation and augmentation of model creation,
transformation, and analysis. One of the key benefits of Al in architecture development is the
automated generation of system models from natural language requirements. Al and in
particular GenAl can interpret textual inputs and propose initial SysML diagrams or block
definitions, significantly accelerating the early stages of model creation and reducing manual
effort (Bader et al. 2024). This capability not only speeds up the modeling process and ensures
reusability of existing models but also helps ensure traceability from requirements to design
artifacts and consistency in system development (Bernijazov et al. 2025).

Al applications in architecture development and MBSE typically process a variety of inputs,
including requirements (Timperley et al. 2025), product design documentation (Zhang et al.
2025a), and detailed system specifications and architectures (Bernijazov et al. 2025). These
inputs are translated into outputs such as SysML-based system architectures, functional
models, and interconnected artifacts spanning across the engineering lifecycle. The
advantages are multifold. Mottaghian et al. (2025) report significant efficiency gains and time
savings, enhanced error reduction and quality assurance, the ability to establish and reuse
engineering knowledge as a strategic resource, and improved human-centricity by allowing
engineers to focus on higher-level, non-repetitive and creative tasks. According to Hovemann
et al. (2025), Al use cases in architecture development and MBSE can be classified into three
main categories:

e Model Generation focuses on the automated creation of system models from technical
inputs, such as natural language requirements, interface descriptions, or technical
documentations.

e Model Optimization focuses on Al evaluating and optimizing models for correctness,
completeness, and compliance with modelling standards or engineering guidelines.

e Model Traceability involves using Al to link architecture artifacts with each other as well
as with artifacts from other product development disciplines, and to retrieve
information from them.

Model Generation

The generation of functional and architectural models is by far the most studied and practically
implemented Al use case in the architecture domain. LLMs can automate the creation of SysML
models and other formal representations based on unstructured or semi-structured inputs. For
instance, Patel et al. (2024) and Timperley et al. (2025) both showcase how LLMs can derive
SysML model entities from textual requirements. While Patel et al. (2024) focus on extracting
model components from general unstructured requirement documents, Timperley et al. (2025)
demonstrate a more domain-specific transformation of functional requirements for spacecraft
systems into structured architectures consisting of functions, modes, and components.

Expanding into simulation and dynamic modeling, Zhang et al. (2025a) apply GenAl to generate
executable models that represent the continuous dynamic behavior of aircraft electrical
systems, starting from design documentation. A similar emphasis on structured model output
is found in the work of Johns et al. (2024), who integrate a LLM into CATIA Magic to automatically
generate conceptual SysML models for rocket systems within the design environment itself. In
the work of Von Heissen et al. (2024), a plugin for Cameo Systems Modeler is developed that
enables LLM-based generation of functional and logical architectures including SysML blocks,
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interconnections, stereotypes, and diagrammatic representations for autonomous remote-
controlled cars. Lameh et al. (2025) extend the application of LLMs beyond SysML by
demonstrating the automated creation of feature models to support product line engineering,
thus addressing variability management in system families. Bouamra et al. (2025) present a
multi-agent system called SysTemp, that leverages LLMs to automatically generate SysML v2
models from natural language specifications, focusing on syntax correction and iterative
refinement to address the lack of training data and improve model quality in systems
engineering. Taken together, these studies illustrate the breadth of Al's potential in MBSE and
discipline-specfic architecture development, from generating functional architecture and
simulation models to create discipline-specific modeling artifacts, highlighting both the
versatility and growing maturity of Al-assisted system modeling approaches.

Model Optimization

The assessment and optimization of existing models as well as the generation of alternative
modeling variants is highly relevant in industry. Al holds significant promise in supporting
engineers by identifying structural gaps, highlighting inconsistencies, and suggesting
improvements based on learned modeling best practices. Moreover, it can assist in comparing
and ranking alternative model structures or architectures with respect to predefined system
goals, such as modularity, scalability, or fault tolerance. Such capabilities can help reduce
modeling errors early in the development process and enhance model maintainability over
time. In this context, Sultan & Apvrille (2024) present an Al-supported framework that leverages
LLMs to detect inconsistencies in SysML models. Even though the number of publications on
model optimization is not yet very high, we expect it to grow rapidly soon due to its high
relevance to practice and the recent introduction of the textual SysML v2 notation.

Model Analysis

Another emerging application is the analysis of system architectures, particularly creating
traceability across RFLPT artifacts and downstream design artifacts. As mentioned in the
Subsection on requirement engineering, linkings between requirements, architecture objects,
design drafts and test cases are crucial for end-to-end traceability along the product
development process and can be seen as the basis for a cross-domain Al application. For
example, FuchB et al. (2025a) present an approach to link architecture documentation to
architecture models using a RAG-based LLM application. Wawrzik et al. (2025) present a
Knowledge Graph Generation Framework for Systems Engineering (KGG4SE), which
automatically generates and quality-checks knowledge graphs from diverse sources, integrate
them into MBSE tools, and thereby improve graph consistency, structure, and scalability.
Karagoz et al. (2024) introduce a graph-based approach transforming SysML models into KGs.
They apply a graph CNN to detect missing links, which addresses the problem of incomplete
knowledge in MBSE system models and improves robustness, reliability and efficiency of
complex system development. An Al-integrated framework for digital continuity and MBSE
improvements is proposed by Xu et al. (2025a), focusing on enabling continuous feedback from
early design and operational phases. Hanke et al. (2025) propose MBSE-Graph-RAG, a
conceptual framework, which integrates knowledge graphs with RAG to enhance MBSE
usability, accessibility, and automation by enabling natural language interaction, automated
system architecture generation, and improved collaboration.

Further publications deal with discipline-specific automation solutions for electronic (Li et al.
2025f, Blocklove et al. 2023) and software architecture design (Esposito et al. 2025, Schmid et
al. 2025).

Despite its promise, the application of Al in architecture development faces several challenges:
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o Data limitations: There is a scarcity of structured, high-quality data specific to system
engineering and discipline-specific architecture development, which hinders model
training and generalization (Poulsen et al. 2025),

e Adoption barriers: Engineers require new skills to effectively use Al tools, including
prompt engineering, model validation and evaluation. There is a steep learning curve
and cultural resistance in some organizations.

e Need for supervision: While LLMs can generate comprehensive models, human
supervision remains essential to ensure correctness, completeness, and adherence to
engineering standards (Von Heissen et al. 2024; Timperley et al. 2025). Therefore, the
integration of explainable and trustworthy Al is essential for architectural developments
(Poulsen et al. 2025).

To address these challenges, Hovemann et al. (2025) recommend the development of
optimized prompting techniques tailored for system engineering tasks. Additionally, Bernijazov
et al. (2025) emphasize the importance of increasing the maturity of GenAl use cases step-by-
step, starting with simpler tasks and gradually extending Al's role as confidence,
trustworthiness and reliability improve. Figure 18 provides an overview of the maturity levels of
Al-based architecture development applications and assigns core capabilities to the
automation levels.

Level O Level1 Level 2 Level 3 Level 4 Level 5
Manual Al-Architecture Al-Architecture Al-Architecture Al-Architecture Autonomous
Architecture Design Assistant Advisor Composer Generator Architecture Agent
d Al carries out
Al assists Al supports Al automates Al takes over .
No Al - - domain
A specific specific development complete
involvement ¥ . 3 processes
subtasks decision making subtasks domain tasks
autonomously
Engineers Al suggests Al proposes Al creates Al generates
9 = p R A ; : , Al generates
define and standard variants with high-level and validates g
maintain components, |(dis)advantages | architecture architectural P
; f end-to-end
architecture interfaces & based on drafts from concepts for SO, S
manually. templates. constraints. requirements. subsystems. it e

Figure 18: Vertical automation levels in Al-based architecture development applications
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Industry Insights into Agentic Al in MBSE

In complex, multi-disciplinary engineering environments, MBSE often plays a central
role in defining product architectures, managing variability, and capturing cross-
domain relationships. However, the growing scale and heterogeneity of digital
engineering ecosystems expose a persistent limitation: insufficient integration
between MBSE tools and domain-specific toolchains, such as requirements
management, CAD/CAE, and simulation. Without strong bidirectional links, model
updates and changes in one domain may not be reliably reflected in others, leading
to data inconsistencies and reduced confidence in cross-discipline decisions.

Dr. Christoph Schulze

To address these challenges, the Accenture team has integrated an Agentic Al Manager & MBSE Expert
system directly into the MBSE tool Catia Magic. This agentic Al approach combines Al Accenture
expertise, in-depth understanding of MBSE methods and knowledge of the underlying
engineering tools, a combination essential to meaningful context to Al-driven MBSE
solutions. By understanding not only the model structures but also their engineering
context (supplied by engineers and stored in RAGs), the Al can autonomously
retrieve, interpret and relate data.

The agentic Al assists human engineers by automating repetitive modeling tasks,
suggesting model updates, and highlighting inconsistencies, while human experts
remain central in validation and decision-making. This has proven particularly
effective in strengthening traceability across model elements and improving the Systems Engineering
consistency and completeness of variant configurations throughout the system Manager
lifecycle. A key insight from this initiative is that tight tool integration is essential for Accenture

the successful deployment of Agentic Al in engineering environments. The ongoing

introduction of SysML V2 will further accelerate this transformation, as its textual

syntax and standardized APIs will enable much easier and more seamless integration

of Al within MBSE ecosystems.

Martin Pauls
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Product Design

Al has emerged as a transformative force in product design, particularly in CAD (Picard et al.
2025). It leverages a variety of inputs, including product specifications, part descriptions,
sketches, and 3D CAD models, to produce optimized or entirely new designs in both two and
three dimensions. Beyond generating geometry, GenAl systems are capable of learning
structured design representations and similarity measures, enabling intelligent retrieval and
modification of existing models. The benefits of applying Al in product design are multifaceted.
According to the Accenture Research Report (2024), significant efficiency and time savings can
be achieved. Gerhard et al. (2025) further emphasize that GenAl enables a human-centric
design process by taking over repetitive tasks, thereby allowing engineers to focus on high-
level conceptual and strategic design. GenAl also enhances creativity by supporting rapid idea
generation and accelerates the evaluation of design alternatives through simulation or rule-
based assessments.

However, the application of Al is not only desirable in M-CAD or E-CAD developments.
Embedded software development in particular benefits from Al applications, as software code
follows strict syntaxes of domain-specific languages and is therefore machine-readable. To
address the complexity of modern development processes, we divide the Product Design
Subsection into three parts, reflecting the three core disciplines of mechatronic product
development. While mechanical design is carried out using M-CAD tools, the design of
electrical and electronic components is performed with E-CAD tools. The rapidly growing
importance of embedded software development, particularly in recent years, is also covered in
this chapter and executed in various CASE® tools.

M-CAD Applications

The application of Al in mechanical product design can be broadly categorized into three major
task domains, as suggested by Heidari & losifidis (2024):

¢ Representation Learning, which enables the extraction and structuring of design
knowledge from existing models, including similarity measures and feature hierarchies

e Model Optimization, where GenAl assists in refining designs to meet specific
engineering criteria

e Model Generation, where new design concepts or geometries are synthesized based
on input constraints, specifications, or learned patterns from prior data.

Representation Learning

Representation Learning focuses on understanding and abstracting geometric and functional
features from CAD models and retrieving existing, very similar designs as soon as possible.
These learned representations serve as the foundation for a variety of downstream tasks. Jones
et al. (2023) describe how models can learn meaningful features from CAD data to support
advanced modeling and analysis. This includes classification of CAD parts based on geometric
or functional criteria, segmentation of models into semantically meaningful components to
support feature editing, and similarity analysis for retrieving comparable parts from large
databases. According to Heidari & losifidis (2024), Al-based similarity retrieval can significantly
support the creative process by surfacing existing designs that serve as alternatives or
inspiration. Many publications show approaches on how the similarity to existing CAD designs

6 CASE: Computer Aided Software Engineering.
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can be evaluated automatically. These are based on GNNs (Quan et al. 2024), autoencoders
(Jung et al. 2024) and unsupervised learning algorithms such as graph contrastive learning (Qin
et al. 2025). Furthermore, Gao et al. (2024) present a weakly-supervised diffusion-based
approach called DiffCAD, which retrieves and aligns CAD models from single RGB images.
Representation learning and model retrieval have already been extensively researched, which
is why the approaches presented here represent only a small selection of publications. For more
in-depth review papers, please refer to Heidari & losifidis (2024) and Ning et al. (2025).

Model Optimization

In the domain of optimization, GenAl contributes to the refinement of design alternatives that
are optimized for specific engineering criteria such as mass, stiffness, and stress distribution,
while also incorporating manufacturing constraints. One prominent technique in this category
is Generative Topology Optimization (GTO). Shin et al. (2023) provide an overview of how DL
supports GTO using surrogate models that reduce computation time, handling high-
dimensional inputs, learning of optimal parameters, and enabling exploration of broader design
spaces. Qin et al. (2024) introduce an intelligent LLM-based system for shear wall structures
that translates natural language into executable code, integrates generation with a two-stage
optimization process, and accelerates design efficiency by up to 30 times while ensuring safety
and cost-effectiveness. Major CAD software vendors like PTC (2024), Dassault Systemes (2024),
and Siemens (2024) have incorporated such optimization features into their platforms already,
facilitating integrated simulation and validation workflows. Optimization GenAl applications are
typically coupled with a simulation or a predictive Al model (see Surrogate Modeling use cases
in Section Simulation) to evaluate the effect of the optimized modification on the engineering
criteria (Kang 2025).

Industry Insights into Technical Drawing Assistant

The creation and validation of technical drawings and 3D models are essential for
ensuring design integrity and compliance with engineering standards. However,
inspection and review processes are often manual and time-consuming. Frequent
revisions and the need for version control further increase the effort, while a lack of
harmonization leads to inconsistencies and potential design errors. A major part of
this complexity arises from collaboration between OEMs and suppliers, where
communication, data handover, and alignment efforts are especially high.

Christian Kohlschein

To overcome these challenges, an automated inspection solution was developed Associate Director

that integrates 2D and 3D drawing checks directly into the engineering workflow. The Accenture
system combines advanced image processing and rule-based validation techniques

to automatically identify design errors and formal inconsistencies. By embedding the

inspection process into the existing engineering environment, it enables automatic

validation and minimizes design misinterpretations in cross-company interactions.

The result is a streamlined, standardized validation process that significantly
reduces lead time and inspection effort for 3D checks. Beyond cost and time savings,
the solution enhances data consistency across projects and supports better
decision-making through automated reports and analytics. Ultimately, this approach
transforms engineering validation into a continuous, data-driven process that
ensures higher reliability and faster time to market. This leads to measurable quality Accenture
improvements and stronger collaboration efficiency across the entire supply chain.

Jann Pehle
Senior Manager
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Model Generation

Generation involves the creation of new designs based on minimal input, such as natural
language, sketches, or point cloud data. The goal of generative models is to create 2D sketches
or 3D CAD models based on the inputs.

In 2D sketch generation, Li et al. (2025c) demonstrate how stable diffusion models can generate
car rim designs from basic prompts and subsequently transform them into 3D models. Liu et al.
(2023b) explore how tools like DALL-E can generate product sketches from text, supporting
early design ideation. Massoudi & Fuge (2025) compare the performance of a multi-agent and
two-agent system for early-stage design of a solar-powered water filtration system. Both
agentic approaches lead to valid JSON structures but only cover few requirements. In 3D model
generation, several approaches exist. Badagabettu et al. (2024) show that simple text prompts
can generate basic geometries, though increasing design complexity and sufficient quality
requirements remain challenging. Xu et al. (2024) propose a multimodal model that integrates
text, 2D images, and 3D point clouds to generate usable CAD geometries. Guan et al. (2025)
present CAD-Coder, a system that incorporates reinforcement learning rewarding geometrical
plausibility and syntactic correctness in the finetuning process. By leveraging a dataset of
110,000 triplets containing text prompts, CadQuery code (CADQuery 2024), and resulting 3D
models, CAD-Coder achieves high-fidelity parametric model generation. Zhou et al. (2025)
introduce CAD-Judge, which includes review modules to efficiently use LLMs for text-to-CAD
generation, outperforming vision-language model-based methods in both accuracy and
computational efficiency. Li et al. (2025€e) develop LLM4CAD, an approach leveraging GPT-4 and
GPT-4V for zero-shot 3D CAD generation from multimodal inputs, showing strong potential but
revealing that text-only prompts often outperform multimodal ones except for complex
geometries like gears and springs. A multi-agent framework is presented by Panta et al. (2025),
who apply multi-modal LLMs to autonomously generate and iteratively refine parametric CAD
models. Their framework consists of five agents (design expert, CAD script writer, executor,
script execution reviewer, and CAD image reviewer) that work collaboratively together and
generate CAD models by iteratively creating, executing, and refining scripts based on both
textual prompts and visual feedback.

E-CAD Applications

The application of Al in electronic component design can be structured into three main E-CAD
and Electronic Design Automation (EDA) application classes, as described by Pan et al. (2025):

e RTL Design, where Al supports creating Register-Transfer Level (RTL) descriptions in
Hardware Description Language (HDL) such as Verilog or VHDL, defining dataflow,
logical operations, and the circuit’s functional behavior for synthesis.

¢ Logic Synthesis and Physical Design, where Al assists in transforming RTL descriptions
into gate-level representations, optimizing placement, routing, clock trees, and
power/ground networks to produce the final geometric layout.

e Analog Circuit Applications, where Al aids in selecting circuit topologies, sizing
devices, and optimizing gain, bandwidth, and noise, including precise layout design for
mixed-signal environments.

RTL Design

Ma et al. (2024a) introduce VerilogReader, a framework that integrates LLMs into the coverage
directed test generation process to understand Verilog code and generate test inputs for
uncovered lines or branches, significantly outperforming random testing for simple and
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medium-level designs. Thakur et al. (2023) present AutoChip, a fully automated, feedback-
driven approach that uses LLMs to iteratively generate and refine HDL code by leveraging
feedback from Verilog compilers and simulations to identify and rectify errors. Tsai et al. (2024)
propose RTLFixer, a novel framework designed to automatically fix syntax errors in Verilog code
using LLMs, employing RAG and ReAct prompting to enable autonomous debugging with
compiler feedback and human expert guidance. Chang et al. (2023) develop ChipGPT, a four-
stage zero-code logic design framework that utilizes LLMs to automatically generate hardware
logic designs from natural language specifications, demonstrating improved programmability
and broader design optimization space. Collectively, these works demonstrate a strong trend
towards automating critical and labor-intensive stages of RTL design, from code generation and
testbench creation to error correction, by harnessing the advanced comprehension and
generative capabilities of LLMs, often through iterative processes and structured feedback
mechanisms.

Logic Synthesis and Physical Design

LLMs are increasingly being applied to enhance logic synthesis and physical design,
streamlining various complex and time-consuming EDA workflows. Wu et al. (2024a) introduce
ChatEDA, an autonomous agent designed to optimize the entire RTL to Graphic Data System
Version |l (GDSIl) design flow through task decomposition, script generation, and task
execution. To address challenges in EDA tool documentation Question-and-Answer, Pu et al.
(2024) propose RAG-EDA, a customized RAG framework that leverages domain-specific
techniques for better semantic understanding, reranking, and accurate answer generation.
Similarly, Liu et al. (2023a) explore domain-adapted LLMs for industrial chip design with
ChipNeMo, focusing on applications like an engineering assistant chatbot, EDA script
generation, and bug summarization as well as analysis through specialized domain adaptation
techniques. Chen et al. (2023b) present TRouter, a machine learning model-based framework
for thermal-driven Printed Circuit Board (PCB) routing, which predicts thermal distribution to
guide wire and via placement for lower-temperature designs. These studies highlight a focused
effort to embed advanced Al capabilities into the later stages of chip design and physical
implementation, with the goal of automating complex tasks, enhancing decision-making, and
minimizing manual intervention. As with mechanical design, experience and data from previous
product developments can be extremely important for such applications, as a great deal of
implicit knowledge is contained in existing electronic designs.

Analog Circuit Applications

Analog circuit applications involve designing circuits that process continuous signals, such as
amplifiers, filters, and converters. Al, particularly LLMs and GNNs, can significantly aid in
automating and optimizing their complex design processes. For example, Chang et al. (2024)
introduce LaMAGIC, a pioneering LLM-based topology generation model for automated analog
circuit design, especially for power converter applications, which can efficiently generate an
optimized circuit design from custom specifications in a single pass. Nau et al. (2025) propose
SPICEAssistant, an LLM-based agent equipped with various tools to interpret feedback from the
LTSpice circuit simulator and retrieve information from datasheets using RAG, demonstrating a
significant improvement in the ability of LLMs to understand, adapt, and dimension electronic
circuits. Plettenberg et al. (2025) present a GNN-based approach for automating the addition
of optimizing components like pull-up/pull-down resistors, Resistor-Capacitor (RC) filters, and
decoupling capacitors in PCB schematics to improve robustness and reliability by representing
schematics as bipartite graphs and predicting component positions. Said et al. (2023)
investigate the use of GNNs for circuit design completion in partially designed analog circuits,
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where they identify missing components and predict their placement and connectivity within
the circuit through a link prediction problem.

CASE Applications

The application of Al in embedded software development is poised to revolutionize the field,
particularly with the advent of LLMs which demonstrate strong capabilities in understanding
and generating code. As highlighted by Petrovic et al. (2025), industries with complex products
such as the automotive industry can benefit heavily from Al adoption in the embedded software
development, since stringent standards, hundreds of thousands of requirements and the trend
toward software-defined vehicles lead to a huge amount of source code to be developed.
Automating aspects of this development can significantly reduce human intervention and
accelerate complex activities. In embedded software development, the application of Al,
specifically LLMs, can be structured into three main classes:

e Code Optimization, where Al algorithms are capable of iteratively improving code for
performance, fix bugs, and generate interpretable policies.

e Code Generation, where Al enables the automatic generation of executable code from
diverse inputs like natural language requirements, formal specifications, or
architectures, significantly boosting efficiency but demanding utmost precision and
adherence to coding standards.

e Code Analysis, where Al analyses code to ensure compliance with safety standards and
automatically creates traceability links to other development artifacts.

Code Optimization

Code optimization focuses on enhancing software quality, performance, and correctness.
Ishida et al. (2024) develop LangProp, an iterative framework that optimizes LLM-generated
code performance through data-driven feedback, particularly for autonomous driving policies.
Sevenhuijsen et al. (2025) introduce VECOGEN, which refines LLM-generated C code using
iterative formal verification feedback to ensure correctness for safety-critical systems. Kirchner
& Knoll (2025) present a framework that optimizes Al-generated C++ code for automotive safety-
critical systems via static verification and test-driven iterative refinement. These studies
commonly emphasize iterative code refinement, guided by diverse feedback loops, to achieve
high quality, correctness, and reliability, especially crucial for safety-critical applications.

Code Generation

Code generation in embedded software development harnesses LLMs to automate the creation
of executable code from diverse specifications, significantly reducing development time and
effort. Patil et al. (2024) propose the spec2code framework, which combines LLM-based code
generation with formal verification to produce functionally correct, industrial-quality C code for
critical embedded automotive software from diverse specifications, including formal ACSL. Liu
et al. (2024a) empirically demonstrate the capability of GPT-4 to generate safety-critical C code
for industrial domains, proposing a Prompt-FDC method that integrates functional, generalized
domain, and constraint requirements to achieve high quality, completeness, and compliance.
Nouri et al. (2025) developed a simulation-guided pipeline for LLM-based code generation,
enabling iterative refinement and bug fixing of Python code for safety-critical automotive
functions like Adaptive Cruise Control and Collision Avoidance by Evasive Manoeuvre based on
feedback from virtual testing. Abdalla et al. (2024) explored automating the generation of
MATLAB Simulink functions from software requirements for the automotive industry, leveraging
fine-tuned open-source LLMs to create graphical programming code and documentation.
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These works collectively highlight the potential of LLMs in automating code creation,
particularly for safety-critical automotive applications, by emphasizing prompt engineering,
iterative refinement, and integration with verification or simulation tools to ensure correctness
and adherence to complex standards. Further publications extend Al's code generation
capabilities to other specialized embedded software domains, including robotic controls (Luo
et al. 2024), drones (Chen et al. 2023a), and microcontrollers (Haug et al. 2025).

Code Analysis

Code analysis focuses on understanding, verifying, and validating software code, ensuring its
quality, correctness, and adherence to standards. Alturayeif et al. (2025) provide a
comprehensive systematic literature review on machine learning approaches for automated
software traceability, which is a crucial aspect of code analysis. Their work highlights how ML,
DL, and LLMs are increasingly utilized to track and manage relationships between various
software artifacts throughout the software development lifecycle particularly for safety-critical
systems. This automated traceability, often formulated as a classification or ranking problem,
links diverse artifacts like requirements, source code, and test cases, supporting essential
processes such as change management, impact analysis, and quality assurance. The study
emphasizes the growing adoption and superior performance of LLMs in this domain, while also
addressing challenges like data scarcity and the need for standardized datasets.

Summary

Despite rapid advances, several challenges must be addressed for Al to become a robust part
of product design workflows across the presented engineering disciplines.

¢ Synchronization and parallel development across mechanics, E/E, and embedded

software: Modern systems engineering requires tightly coordinated development of
mechanical, electrical/electronic, and embedded software components. However,
these domains often follow different development cycles, tool chains, and maturity
levels, making it challenging to maintain consistent design baselines and ensure
traceability across disciplines (Berriche et al. 2020). Al-based design assistants must
handle asynchronous updates, conflicting requirements, and cross-domain
dependencies, while supporting continuous integration of design changes. Without
robust synchronization mechanisms, the risk of design inconsistencies, late-stage
integration issues, and costly rework remains high.

¢ Insufficient data availability and model robustness: The field continues to suffer from
alack of annotated and structured datasets, which limits the effectiveness of supervised
learning approaches and necessitates reliance on unsupervised or self-supervised
techniques. This data scarcity, combined with high variability in model performance
across different design contexts, makes it difficult to ensure reproducibility and
generalization of results (Heidari & losifidis 2024).

e Challenges in human-Al collaboration: The integration of Al tools into collaborative
design workflows raises important questions about how designers and engineers should
interact with Al systems. As Bordas et al. (2024) highlight, deeper research is needed to
define effective roles, responsibilities, and interaction patterns between humans and Al
in the creative process, particularly when dealing with complex design requirements
and interdisciplinary teams.

¢ Technical limitations in generating and structuring 3D content: The automated
creation of physically plausible and functionally valid 3D CAD models remains a
significant technical hurdle. Guan et al. (2025) argue that overcoming this challenge
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requires the development of unified datasets that link natural language prompts,
generative code (e.g., CadQuery), and the resulting CAD models. Furthermore, to fully
harness the capabilities of LLMs, it is necessary to make 3D data compilable in a
software-like fashion, enabling the generation of interpretable and traceable model
code that directly leads to valid 3D geometries.

Overcoming these challenges leads to higher levels of automation in the application of Al in
product design, as illustrated in Figure 19, but still requires further research efforts.

Level O Level1 Level 2 Level 3 Level 4 Level 5
Manual Product Al-Design Al-Design Al-Design Optimizer | Task-Autonomous | a Desig
Designer Assistant Supporter Al-Designer Agent
s Al carries out
Al assists Al supports Al automates Al takes over .
No Al - i domain
e specific specific development complete TN
subtasks decision making subtasks domain tasks
autonomously
Engineers Al creates
< : Al generates | Al manages end-
rely on own Al proposes parametric : .
! Al suggests v 4 production- to-end design
expertise to ] multiple design models and )
standard design 1 SI ready designs | across M-CAD,
generate options listing runs s
roduct G g (dis-)advantages.| optimization gt SN
" ) i parts. embedded SW.
designs. loops.

Figure 19: Vertical automation levels in Al-based product design applications
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Simulation

GenAl and related Al technologies are increasingly transforming simulation processes in
product development, enabling faster, more efficient, and more adaptive virtual testing. The
benefits of Al-accelerated simulation are substantial. According to the review by Herrmann &
Kollmannsberger (2024), Al can be used not only to substitute traditional simulation with
surrogate models but also to enhance simulations by replacing specific components within the
simulation chain. These improvements lead to reduced computation times and lower resource
requirements while maintaining acceptable levels of accuracy. Moreover, neural networks can
be used to construct new discretization schemes, leveraging building blocks such as automatic
differentiation, gradient-based optimization, and GPU-based parallelization. Generative
approaches further expand the scope of simulation by synthesizing entirely new simulation
scenarios or datasets based on |learned patterns.

The application of GenAl in simulation can be broadly categorized into three major task
domains:

e Surrogate Modelling, which focuses on replicating simulation outputs with lower
computational effort applying Al.

¢ Simulation Optimization, where Al guides the tuning of design parameters within
simulation loops.

e Simulation Generation, where new simulation scenarios, models or inputs are
generated or multi-agent systems are applied to automate end-to-end simulation
processes.

Surrogate Modelling

Surrogate modelling is an emerging application area of Al in engineering simulation, where
machine learning models, particularly neural networks, are trained to approximate the
behaviour of complex physical systems with significantly lower computational cost. These
models act as stand-ins for traditional numerical simulations, enabling rapid prediction and
design iteration. A fundamental distinction in this field lies between data-driven neural networks
and physics-informed neural networks (PINNs). While data-driven models learn input-output
mappings purely from simulation or experimental data, PINNs incorporate physical laws,
typically in the form of partial differential equations, directly into the loss function by penalizing
deviations from known physical behaviour. This hybrid approach improves generalization,
particularly in data-scarce areas, and enhances the physical plausibility of predictions
(Herrmann & Kollmannsberger 2024).

Recent research has demonstrated the versatility of surrogate modeling across a range of
engineering domains. Hajisharifi et al. (2024) developed a reduced-order model that estimates
critical simulation coefficients, drastically accelerating CFD simulation runtimes while
preserving accuracy. Similarly, Jnini et al. (2025) presented a neural network-based, physics-
constrained mapping from geometric configurations to flow field variables such as velocity and
pressure, specifically applied to CFD simulations of curved backward-facing steps. Their work
highlights how surrogate models can be tailored for complex fluid flow problems with
geometrically sensitive dynamics.

In the structural mechanics domain, Sunil & Sills (2024) successfully predicted displacement
fields in 2D FEM simulations using a PINN architecture, demonstrating that incorporating
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physical constraints into learning enables accurate and generalizable surrogates for stress-
strain analysis.

Simulation Optimization

Simulation optimization leverages the power of Al to automate and accelerate the tuning of
input parameters in complex engineering simulations. By integrating Al with conventional
simulation tools, this approach enables engineers to explore design spaces more efficiently,
identify performance bottlenecks, and optimize system behavior with minimal manual
intervention. A key component of simulation optimization is automated sensitivity analysis,
which assesses how changes in input parameters affect simulation outputs. Traditionally a time-
consuming task involving numerous simulation runs, this process can now be streamlined with
Al models that learn the relationships between parameters and performance metrics. These
models not only reduce computational overhead but also uncover non-obvious dependencies
and interactions between parameters, enabling more targeted optimization strategies. In
addition, parameter optimization is enhanced using generative models and intelligent search
techniques. Al systems can propose candidate parameter sets based on learned patterns from
historical simulations or desired output targets. Through iterative refinement, often guided by
reinforcement learning or Bayesian optimization, these systems converge on optimal
configurations that meet predefined objectives such as minimal energy consumption,
structural integrity, or flow efficiency. Zhang (2025h) applies deep reinforcement learning
algorithms to optimize turbulence model parameters, improving the accuracy and efficiency of
CFD simulations. Zhang et al. (2025g) demonstrate how LLMs can act as decision-makers in
parametric shape optimization for CFD simulations, efficiently guiding the search for optimal
designs and outperforming classical optimization methods in convergence speed.

Further Publications that perform optimizations based on generative algorithms are already
widespread in the literature, particularly for CFD simulations (Chen et al. 2024, Chen et al.
2025a, Pandey et al. 2025, Dong et al. 2025, Yue et al. 2025a, Yue et al. 2025b). The content of
these papers is presented in the subsection on simulation generation, as they also involve the
generation of the simulation setup.

Industry Insights into LLM-supported FEM Simulations

In the context of product development, Digital Twin models have become essential to
meeting performance targets within realistic time and cost. However, their effective
use often depends on specialized expertise concentrated in a few experts, creating a
barrier to scaling the full potential of Virtual Product Development.

To address this, an Agentic Al approach was introduced, leveraging state-of-the-art
LLMs integrated with a commercial Finite Element solver. The agents manage pre-
and post-processing through Python APIs and coordinate High Performance
Computing resources to execute simulations more efficiently. By automating these ?
complex tasks, the system lowers the expertise required to interact with Digital Twin Senior Manager
software, allowing engineers to dedicate more effort to product value creation Accenture
instead of tool-specific activities.

Mattia A. Ciampa
Product Development

The outcome was a significant improvement in efficiency, speed, and accessibility,
enabling engineers with limited simulation experience to contribute effectively. A key
insight from this initiative was the importance of coupling Agentic Al with robust
simulation infrastructures and scalable data pipelines. Only within such an
ecosystem can Al agents provide consistent, reliable, and valuable support.

Simulation Generation
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Recent research demonstrates the increasing autonomy of multi-agent GenAl frameworks for
automating simulation workflows, particularly in CFD simulations. These systems translate
natural language inputs into executable simulation setups and optimize simulations
parameters, reducing the need for expert intervention.

Chen et al. (2024) and Dong et al. (2025) both present multi-agent systems capable of end-to-
end CFD simulation based solely on natural language. While Chen et al. (2024) present
MetaOpenFOAM, a system that employs a RAG approach using CFD tutorials, NL2FOAM by
Dong et al. (2025) replaces RAG with fine-tuning on 28,000+ simulation configurations,
enabling more robust domain-specific code generation without external lookups. Both
frameworks include agents for requirement interpretation, input file generation, simulation
execution, and error handling. Chen et al. (2025a) expand MetaOpenFOAM by
OptMetaOpenFOAM, which integrates automated sensitivity analysis and parameter
optimization, raising the autonomy and accessibility of simulation optimization for non-experts.
Similarly, Pandey et al. (2025) and Yue et al. (2025a) propose multi-agent frameworks that
leverage RAG databases to embed domain-specific knowledge from prior setups. These
systems refine the roles of agents to include requirement parsing, configuration generation,
and iterative correction through error analysis, demonstrating enhanced simulation validity and
modeling accuracy. In another publication, the authors automate the approach and extend,
among other things, the tool interoperability capabilities of the multi-agent system using MCP
(Yue et al. 2025b). Feng et al. (2025) introduce another multi-agent framework that transforms
natural language queries into fully automated, reproducible CFD simulations with rigorous
reliability standards, demonstrating accessibility and precision across diverse flow problems.
The framework consists of different agents, which are responsible for pre-processing, prompt
generation, simulation execution and post-processing. Due to the increasing popularity of
GenAl and agentic Al in CFD simulations, benchmark suites for evaluating the performance of
LLMs in CFD workflows have recently been published (Somasekharan et al. 2025).

Beyond CFD, Hou et al. (2025a) explore FEA simulation generation using a GNN to retrieve and
adapt similar simulation code segments, enabling LLMs to generate valid FEA input files. In the
field of multibody dynamics, Moéltner et al. (2025) show the feasibility of LLM-based simulation
generation and evaluation, despite limitations in parameter interpretation.

The highly advanced applications in the field of simulations demonstrate the value that GenAl
can offer in this domain. However, several challenges still need to be addressed.

¢ Limited generalization: While surrogate models have demonstrated promising results,
their performance often declines when applied to unseen scenarios or highly nonlinear,
multi-physics problems. Even PINNs struggle to maintain accuracy when domain
knowledge is incomplete or difficult to encode, raising concerns about the robustness
and physical plausibility of Al-generated simulation outputs (Herrmann &
Kollmannsberger 2024; Sunil & Sills 2024).

¢ Insufficient data availability: Many simulation tasks, particularly outside well-
researched domains like CFD, lack large, annotated datasets required to train reliable Al
models. Although fine-tuning on task-specific configurations, as demonstrated by Dong
et al. (2025), offers a solution, the general applicability of such approaches is limited by
the cost and effort of curating domain-specific training data at scale.

e Trust and Interpretability: Despite advances in automation and multi-agent
orchestration (e.g. Chen et al. 2024; Yue et al. 2025a), GenAl frameworks for simulation
are often not seamlessly integrated into standard CAE toolchains. Furthermore, the lack
of interpretability (Herrmann & Kollmannsberger 2024), transparent error handling, and
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self-validation capabilities hinders user trust, especially in safety-critical or regulatory

contexts, where engineers must retain oversight and accountability for simulation
outcomes (Moltner et al. 2025).

The maturity level of simulation applications in the literature can already be considered high
and, by overcoming the identified challenges, can potentially even be elevated according to

the automation levels shown in Figure 20.

Level O Level1 Level 2 Level 3 Level 4 Level 5
Manual Simulation Al-Assisted Al-Simulation Al-Simulation Al-Simulation Autonomous
Engineer Simul Decision Support Optimizer Generator Simulation Agent
! Al carries out
Al assists Al supports Al automates Al takes over .
No Al - > domain
WS specific specific development complete T
subtasks decision making subtasks domain tasks P
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A . Al controlsthe
Engineers Al predicts Al executes : .
Al suggests 3 : Al automates . . full simulation
manually set 3 ) simulation ; . full simulation h 2
simulation full simulation lifecycle incl.
up, run, and results based on workflows for J r
. parameters and pre- & post- : design variation
interpret 4 surrogate . defined
A ; settings. processing. and
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optimization.

Figure 20: Vertical automation levels in Al-based simulation applications
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System Testing

System testing is a critical phase in product development, encompassing both software and
hardware verification to ensure functional correctness, reliability, and performance under real-
world conditions. In practice, this involves complex and often time-consuming tasks such as
generating test cases, executing tests across diverse configurations, analyzing large volumes
of output data, and diagnosing the root causes of observed failures.

GenAl and related Al technologies are beginning to reshape system testing by automating these
traditionally manual tasks, improving test coverage, accelerating feedback cycles, and
uncovering system-level issues earlier in the development process. For software testing, GenAl
models can interpret requirements or source code to automatically generate test cases, identify
logic flaws, and assist in debugging by tracing error propagation or suggesting fixes (Wang et
al. 2024a). In hardware-in-the-loop (HIL) or test rig environments, Al supports real-time signal
analysis, anomaly detection, and pattern recognition, reducing the engineering effort required
to interpret high-frequency, high-volume sensor data.

According to recent developments, the application of GenAl in system testing can be broadly
categorized into three major task domains:

¢ Test Generation, where Al algorithms generate and optimize test cases from
requirements, specifications, or source code

e Test Debugging, in which GenAl supports fault localization, failure prediction, and
code-level issue resolution

e Test Data Analysis, especially in hardware testing, where GenAl enables intelligent

processing of sensor data, identification of failure patterns, and extraction of insights
from large-scale test logs or rig outputs.

Test Generation

Test case automation plays a pivotal role in increasing the efficiency, coverage, and consistency
of system testing, particularly in complex software systems. Traditionally reliant on manually
written test cases, recent advances in GenAl have introduced new ways to automatically
generate, select, and optimize test cases based on natural language requirements, source
code, or behavioural properties. These techniques not only reduce engineering effort but also
improve test relevance, coverage and adaptivity in evolving development environments.

Recent research highlights the increasing potential of GenAl to automate and enhance test case
generation across software and cyber-physical systems. Birchler et al. (2023) propose a
machine learning-based method to selectively skip test cases unlikely to uncover faults in self-
driving vehicle software, significantly improving the cost-efficiency of large-scale test
campaigns. Etemadi et al. (2025) introduce CHECKPROP, a novel LLM-based approach for
generating property-based tests that verify system behaviour over a wide range of inputs,
supporting both design-time verification and runtime monitoring in cyber-physical
environments. A growing trend is the integration of GenAl-driven testing with broader
development workflows. Huang et al. (2023) present a multi-agent architecture where test case
generation, execution, and feedback are coupled with automated code refinement through a
programmer agent. This aligns with findings from Jin et al. (2024), who observe a shift toward
LLM-based agents that interconnect test case creation, debugging, and software improvement,
paving the way for more autonomous, adaptive testing systems. Amyan et al. (2024) present an

> o
accenture dﬂsa
@l

| 4
~Z Fraunhofer
ISST

58 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.



NLP-driven approach using BERT and Word2Vec that automatically derives and executes fault
injection test cases from functional safety requirements on HIL platforms, achieving over 91%
accuracy and significantly improving the efficiency of ISO 26262-compliant automotive safety
validation. An LLM-based method to automatically generate PLC test cases from function block
code is proposed by Koziolek et al. (2024), showing that it is fast and effective for low-to-
medium complexity programs. Wynn-Williams et al. (2025) demonstrate that LLMs can translate
informal automotive test specifications into executable test scripts with reasonable accuracy,
while emphasizing the importance of prompt design, model choice, and retrieval mechanisms
for industrial applicability. Milchevski et al. (2025) propose an Al-powered assistant that
leverages LLMs and structured intermediate representations to generate system-level test
specifications, reducing development effort by 30-40% and improving accuracy and reliability
in safety-critical domains. Ye et al. (2025) introduce UVM2, an LLM-powered verification
framework that automates UVM testbench generation and refinement, achieving up to 38x
faster setup and outperforming state-of-the-art solutions in code and function coverage for
industrial-scale hardware designs.

Industry Insights into Test Case Generation

In the context of embedded software development, the need to accelerate the Test &
Validation phase has become increasingly critical. Traditionally, test automation
required frequent manual updates whenever software requirements changed, leading
to delays and inconsistencies.

To address this, an Agentic Al approach was introduced, leveraging state-of-the-art
LLMs and Retrieval-Augmented Generation. This setup enabled the automated
generation of test cases directly from evolving requirements and validation results.
Implemented via a generative Al platform with agentic workflows, the system
continuously adapts test automation scripts, ensuring alignment with the latest

development inputs. The result was a noticeable increase in efficiency and quality, Marcus Hammes
even though formal metrics were not captured. Technical Director
Accenture

A key insight from this initiative was the importance of integrating Agentic Al with a
robust knowledge graph or RAG system. This combination proved effective only when
deployed within a broader GenAl infrastructure, where agents and humans
collaboratively maintain and update data. This ensures the Al can deliver meaningful
and reliable automation support throughout the V-Model development cycle.

Test Debugging

GenAl is increasingly being applied to streamline debugging workflows by detecting software
defects, suggesting fixes, and improving the overall interaction between developers and
automated tools. These Al-assisted debugging approaches aim to reduce the time and effort
required to identify and resolve issues, while also enhancing developer trust and transparency.

Wang et al. (2025a) introduce Copilot for Testing, an integrated debugging and testing system
embedded directly within the software development environment. It continuously monitors
codebase changes to detect bugs, generate relevant test cases, and propose fix suggestions in
real time. This tight integration accelerates the feedback loop between coding and testing,
enabling faster, more iterative development cycles. Focusing on developer interaction, Kang et
al. (2025) propose an LLM-based debugging framework that not only identifies and resolves
code issues but also explains its reasoning process to developers. This added transparency
fosters greater trust in Al-driven debugging and improves user acceptance in professional
development environments. To support rigorous evaluation of such systems, Tian et al. (2024)
present a benchmarking framework for LLM-based debugging tools, offering standardized
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scenarios and metrics to assess the effectiveness and reliability of Al-generated fixes and
diagnostics. Yao et al. (2024) propose HDLdebugger, a RAG-based and fine-tuned LLM
framework that automates debugging of Hardware Description Language code, outperforming
13 baselines and achieving up to 81.93% pass-rate in chip design tasks.

Test Data Analysis

Compared to software testing, hardware testing for complex mechatronic systems presents
greater challenges due to its iterative nature and the layered integration of model-in-the-loop,
software-in-the-loop, and HIL simulations (Sadri-Moshkenani et al. 2022). The heterogeneity and
physical dependencies of these processes make it difficult to apply systematic Al testing
strategies. As a result, GenAl applications in this context focus primarily on analyzing sensor
signals and test data collected from physical test rigs.

Chen et al. (2025b) introduce FaultGPT, a system that leverages GenAl to generate automated
fault diagnosis reports directly from vibration signals, offering fast and interpretable feedback
in hardware testing environments. Similarly, Alsaif et al. (2024) present a multimodal LLM fine-
tuned for fault detection and diagnosis in Industry 4.0 scenarios. Their approach processes
diverse data types, such as images, audio, vibration signals, video, and text, to provide
comprehensive diagnostics and actionable guidance to test engineers. Compared to
conventional ML techniques, these multimodal models can dynamically support users
throughout the testing process. Abboush et al. (2024) propose a novel framework that uses
automated fault injection and HIL simulation to generate high-quality, representative real-time
datasets for Al-assisted validation of automotive software systems. In another publication, the
authors propose an ML-assisted failure analysis approach that employs LSTM models to
automatically detect and classify known and unknown faults for the real-time validation of
automotive software systems (Abboush et al. 2025). Additionally, Auer et al. (2025) propose
generalizable time-series models for anomaly detection and forecasting that can be applied out
of the box without fine-tuning. These models offer scalable solutions for real-time signal
analysis across different hardware setups and use cases. Presentedj developments highlight
how Al enhances data interpretation and decision-making in HIL testing by transforming
complex sensor data into valuable diagnostic insights and recommendations.

Further publications deal with LLM-assisted log parsing of diverse HiL documents. For example,
Xiao et al. (2024) propose LogBatcher, a training-free LLM-based log parser that clusters and
batches logs to reduce overhead, achieving efficient and cost-effective log parsing across
diverse datasets. Similar approaches called LogParser-LLM and LLMParser are presented by
Zhong et al. (2024) and Ma et al. (2024b), respectively. An extensive survey on the use of LLMs
for event log analysis is provided by Akhtar et al. (2025).

The highly repetitive nature of testing tasks offers significant potential for automation, although
several challenges still need to be overcome:

e Limited test diversity and low coverage: Generating diverse and comprehensive test
inputs remains a challenge for LLMs, as they often struggle to explore the full behavioral
space of the software under test. Despite strategies like mutation testing and fuzzing,
current approaches still result in low line and branch coverage, limiting the
effectiveness of automated testing (Wang et al. 2024a).

e Challenges in real-world application: Applying LLMs in industrial software testing
faces practical barriers, including concerns about data privacy, limited computational
resources, and the need for organization-specific fine-tuning. Many companies opt for
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open-source models, which often underperform without high-quality, domain-specific
training data, which poses a significant hurdle for widespread adoption in production
environments (Wang et al. 2024a).

e Complexity and heterogeneity of hardware testing workflows: Hardware testing,
especially in mechatronic systems, involves layered approaches such as model-in-the-
loop, software-in-the-loop, and HIL testing (Sadri-Moshkenani et al. 2022). The diversity
of hardware setups, sensor configurations, and test environments makes it difficult to
standardize GenAl applications, limiting scalability and requiring extensive adaptation
for each use case.

Figure 21 shows the different automation levels in GenAl-based system testing applications.

Level O Level1 Level 2 Level 3 Level 4 Level 5
Manual Test Al-Assisted Test Al-Supported Test Semi-Automated Task-Autonomous Autonomous
Developer Writer Designer Test Optimizer Test Generator Testing Agent
i Al carries out
Al assists Al supports Al automates Al takes over .
No Al iy o domain
S aer T specific specific development complete T
subtasks decision making subtasks domain tasks P
autonomously
Engineers Al identifies Al generates Al executes, | Al manages end-
Al suggests o
handle test critical test test cases and adapts, and to-end test case
software tests . .
and IVV ; coverage areas defines evolves test & script
. and analysis 1
activities fully zon for hardware and boundary cases and generation and
manual. ) software. conditions. environments. log analysis.

Figure 21: Vertical automation levels in Al-based system testing applications
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Release Management

As product complexity grows, particularly in regulated industries such as automotive,
aerospace, and medical technology, release management has become a critical pillar of
product development. It encompasses not only the coordination of software and hardware
release cycles but also the generation of technical documentation and the assurance of
regulatory compliance. These tasks are typically labour-intensive, repetitive, and involve
navigating large volumes of heterogeneous data across version histories, change requests, test
cases, requirements, and configurations.

Al is now being explored as transformative tool to streamline release workflows. Al algorithms
can automatically extract, summarize, and synthesize relevant information from technical
artifacts to generate documentation, traceability records and compliance reports. By
embedding domain-specific language models into development pipelines, organizations can
monitor compliance more continuously and reduce the manual overhead of maintaining up-to-
date regulatory records. Al systems can also intelligently link distributed and unstructured data
to derive insights, generate impact analyses, and trace the evolution of functionality across
releases.

Al applications in release management can be broadly categorized into three major task
domains:

e Documentation Generation, where GenAl is used to generate user manuals,
maintenance guides, or product documentation from various inputs such as source
code, change logs, and configuration files.

e Compliance Monitoring, where Al systems assist in monitoring, extracting, and
structuring compliance-related information to support audits and reduce the risk of
non-conformity.

¢ Release Note Creation, where GenAl generates clear and consistent release notes by
synthesizing information from change requests, commit messages, test results, and
requirements, helping to ensure traceability and improve communication across
stakeholders and product versions.

Documentation Generation

Product documentation, such as user manuals, maintenance guides, API references, and safety
instructions, is essential for ensuring usability, maintainability, and regulatory compliance.
Traditionally, documentation is created manually by technical writers or engineers, a process
that is often disconnected from fast-paced development cycles. As product complexity
increases and regulations evolve, the need for up-to-date, traceable, and standardized
documentation translated into different languages has become more pressing. Al offers a
promising solution by automatically generating technical documentation from structured and
semi-structured data sources such as requirements, source code, system configurations,
change logs, and design specifications. This not only reduces manual effort but also enables
near real-time updates to documentation as the underlying product evolves due to
continuously applying product changes.

Sovrano et al. (2025) demonstrate the use of LLMs for generating software-related technical
documentation that complies with the European Al Act. Their approach focuses on aligning Al-
generated documentation with regulatory requirements by interpreting legal constraints and
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translating them into structured descriptions of system behaviour, data usage, and risk
management. This work highlights the potential of GenAl to bridge the gap between legal
compliance and technical clarity, particularly in regulated domains where documentation must
serve both engineering and auditing purposes. Tao et al. (2024) propose LLM-R, a framework
for the generation of maintenance schemes based on hierarchical agents and RAG, which is
intended to enhance the equipment operation efficiency in different industries, such as
aviation, energy and transportation. Shi et al. (2025) present a method based on KGs, RAG and
Chain-of-thought prompt engineering for the generation of accurate, structured maintenance
guidance documents. They demonstrate that they significantly improve content precision and
structural controllability compared to prompt-only approaches. Khoee et al. (2024) introduce
GoNoGo, an LLM-based multi-agent system that streamlines automotive software release
decisions by automating data analysis and supporting risk-sensitive deployment choices,
thereby reducing manual intervention and accelerating release processes.

Industry Insights into Technical Documentation

Agentic Al is redefining the landscape of technical publications by automating repetitive
authoring tasks, accelerating content delivery by up to 30%, and reducing manual effort
to achieve ~20% cost savings. Beyond efficiency, validation agents significantly improve
accuracy by ensuring compliance with regulatory standards and minimizing human
error. Multi-agent systems also enable seamless collaboration across authoring
disciplines - writing, editing, illustration, and program management - creating more 2
consistent and integrated outputs.

Ronobijay Bhaumik

The technical foundation relies on a modular agent architecture that scales across Practice Leader

diverse products and geographies. Generative agents powered by LLMs handle content Accenture
drafting and refinement. Retrieval agents integrate vector databases with hybrid keyword
and semantic filters to ground content in authoritative sources. Validation agents
leverage NLP models and rule-based engines to automate compliance checks, while
personalization agents use embeddings and recommendation models to adapt
documentation to specific user contexts. These agents are orchestrated via event-driven
workflows, with APls connecting them to product data repositories, compliance
systems, and feedback loops. A shared memory layer spanning short-term context and
long-term knowledge can ensure continuity and adaptability across the authoring

process. Ashish Wadjikar
Associate Director
As adoption matures, Agentic Al will evolve into self-optimizing systems, fostering Accenture

innovation, accountability, and higher-value technical publications.

Compliance Monitoring

Ensuring compliance with industry-specific regulations and legal frameworks is a central aspect
of product release management. Compliance tasks often involve interpreting complex legal
texts, mapping requirements to technical artifacts, and generating documentation for internal
reviews or external audits. Traditionally handled through manual processes, compliance checks
are time-consuming, prone to oversight, and difficult to scale as products and regulations
evolve.

Hassani (2024) presents an LLM-supported framework for regulatory analysis that assists
engineers and legal experts in identifying relevant legal clauses and aligning them with product
documentation. Using RAG-techniques, the system enables semi-automated compliance
reporting by highlighting potential gaps without replacing human judgement. This supports
compliance-by-design approaches while reducing manual effort in interpreting regulatory
texts. Han et al. (2025) propose a modular RAG-based system that automatically determines the
applicability of medical device standards across jurisdictions, achieving interpretable,
traceable justifications and significantly improving compliance reasoning compared to
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retrieval-only or rule-based approaches. Arora et al. (2024b) introduce CompliAT, a framework
that leverages LLMs to ensure terminology consistency, classify assistive technology products,
and trace specifications to regulatory requirements, thereby improving compliance,
accessibility, and safety in release management and technical documentation. Madireddy et al.
(2025) develop an LLM-driven framework that semi-automates building code compliance
checking by translating regulatory requirements into executable scripts, thereby reducing
manual effort and improving both accuracy and efficiency in regulatory verification for
construction projects.

Release Note Creation

Release notes play a critical role in communicating changes, improvements, and known issues
to stakeholders at each product version milestone. Traditionally compiled by release managers,
this task requires the aggregation of inputs from multiple sources, including test reports, issue
trackers, and version control systems, making it highly dependent on manual expertise. GenAl
presents a promising solution to streamline and automate this process. By synthesizing product
data from across the development pipeline, LLMs can generate coherent, audience-tailored
release notes that improve traceability and decision-making.

Daneshyan et al. (2025) demonstrate an LLM-based pipeline for automated release note
creation tailored to project-specific domains, significantly reducing manual workload and
ensuring consistency across versions. Similarly, Wu et al. (2024b) introduce a co-pilot system
that assists release managers not only by summarizing technical artifacts, such as test
outcomes, defect statistics, and code quality metrics, but also by answering strategic queries
like “Are we ready to release?” or “What are the open risks?”. In support of the documentation
quality, Kumar et al. (2024) propose using LLMs to evaluate the clarity and completeness of bug
reports and software artifacts, further enabling high-quality, automatically generated release
documentation.

GenAl applications in release management offer huge potential, but key challenges remain
critical:

¢ Fragmented and unstructured data sources: Release documentation and compliance
reports must synthesize information from diverse sources across all disciplines of the V-
model such as change logs, test reports, code repositories and requirement databases.
The lack of standardized formats and semantic consistency across these artifacts
complicates automated data extraction and summarization by GenAl systems.

e Context-aware documentation generation: Automatically generating accurate and
audience-specific release notes or compliance reports requires a deep understanding
of the domain, product context, and stakeholder needs. While Al models can generate
fluent text, maintaining factual correctness, traceability, and relevance to regulatory
standards remains a key challenge. Providing product- and company specific context to
the algorithms is a key challenge for GenAl applications in release management but can
be tackled through the application of RAG and KGs.

¢ Limited trust and validation mechanisms: GenAl-generated outputs, such as release
summaries or compliance insights, require validation for correctness and
completeness. However, robust quality assessment frameworks for Al-generated
documentation are still underdeveloped, posing risks to trust and adoption in high-
stakes industrial release processes, such that manual involvement is still highly required
for critical release and compliance documentations.
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Figure 22 provides an overview of the automation levels in Al-based release management

applications.

Level O

Manual Technical
Writer

No Al
involvement

Engineers and
tech writers
manually draft
and maintain all
documentation.

Level1

Al-Documentation
Assistant

Al assists
specific
subtasks

Al suggests text
shnippets or
formatting for
documentation.

Level 2

Al-Documentation
Planner

Al supports
specific
decision making

Al recommends
documentation
structure and
additional
content.

Level 3

Al-Documentation
Generator

Al automates
development
subtasks

Al
automatically
generates
chapter
drafts.

Level 4

Task-Autonomous
Documentation

Al takes over
complete
domain tasks

Al takes over
specific E2E
documentation
tasks.

Level 5
Autonomous
|Documentation Agent

Al carries out
domain
processes
autonomously

Al controls end-
to-end
documentation
& compliance
pipeline.

Figure 22: Automation levels in GenAl-based release management applications
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Cross-Domain Applications

While many Al applications in engineering focus on a single engineering domain and discipline,
an increasing share of publications exploit the interconnections between domains. Modern
engineering processes are inherently cross-functional, with artifacts such as requirements,
architecture models, source code, CAD design, test cases, test logs, and release
documentation continuously influencing one another. This creates opportunities for Al systems
to add value by integrating heterogeneous data sources, ensuring consistency across domains
and artifacts, and enabling knowledge transfer beyond domain and disciplinary boundaries.

Such cross-domain applications are especially powerful where engineering complexity,
regulatory pressure, and the demand for rapid product cycles converge. By bridging silos, Al
does not only enhance efficiency but also reduces errors and strengthens compliance in
scenarios where manual synchronization would be error-prone and resource-intensive.

Cross-domain applications can be categorized into

e Change & Configuration Management, where Al supports the analysis of change
requests, configuration baselines, and related artifacts across domains to ensure
consistency, assess impacts, and improve traceability throughout the product lifecycle.

e Portfolio & Variant Management, where Al enables the analysis and optimization of
complex product portfolios and variant structures by identifying redundancies,
predicting market and cost impacts of portfolio decisions, and supporting automated
variant derivation and configuration based on technical and business constraints.

e Program & Project Management, where Al assists in planning, monitoring, and
controlling engineering programs by predicting schedule deviations, cost overruns, and
resource conflicts, while also automating reporting and decision support through
intelligent analysis of project data and dependencies.

e Cross-Domain Multi-Agent Applications, where multi-agent systems carry out cross-
domain development tasks autonomously, modify artifacts, implement changes, and
automate cross-domain engineering processes.

¢ Cross-Domain Context Management, where Al extracts and links knowledge from
heterogeneous engineering domains and stores it in vector (RAG) or graph databases
(KG) to enable efficient retrieval and reasoning for downstream Al applications.

Configuration and Change Management

Al can significantly enhance configuration and change management processes by enabling
faster identification of dependencies, predicting potential impacts, and supporting decision-
making in complex development environments. Al-based methods have already been widely
deployed within software impact analysis (Samhan et al. 2024) and show strong potential to
support the efficient development of complex physical products as well (Burggraf et al. 2024).
This helps companies reduce risks, improve consistency, and accelerate change
implementation.

In automotive software development, El Asad et al. (2025) propose a RAG-assisted LLM concept,
that predicts impacts caused by software updates in vehicle manufacturing and enables earlier
detection of risks that might otherwise appear only at later stages. Treshcheva et al. (2025)
create traceability links between requirements and test scripts, which are essential for
performing change management activities such as impact analysis. Zhang et al. (2025e)
introduce MBSE 2.0, a next-generation systems engineering framework that integrates Al,
model governance, and cross-domain collaboration to overcome the limitations of traditional
MBSE. The authors state that Al enhances enterprise change management by moving beyond
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static, manually defined traceability toward intelligent association, where technologies like KGs
and LLMs automatically infer and update relationships between requirements, architectures,
and simulations.

Industry Insights into Change & Config. Mgmt.

Managing product configurations and technical changes has become increasingly
complex. Every modification must be evaluated against a large set of
interdependent requirements, design elements, test results, and sourcing
constraints.

Traditionally, engineers spend substantial time searching across disconnected p,. Jan-Ivo Springborn
systems and documents to trace the impact of a change, often leading to delays or
incomplete assessments. Artificial Intelligence offers a new approach by combining
Knowledge Graphs with Large Language Models (LLM). Combined, they create a
structured map of product data, linking information from heterogeneous sources
into a consistent and navigable network.

Director Config. Mgmt.
Accenture

On top of this, LLMs can retrieve and interpret the relevant context, guiding
engineers quickly to the connections that matter most. This makes it possible to
understand the implications of an Engineering Change Request in minutes rather
than days, while maintaining end-to-end traceability. The benefits are more reliable

decisions, greater transparency in change processes, and improved collaboration Florian B6hme
between disciplines throughout the product lifecycle. These concepts provide a Manager Config. Mgmt.
promising path to finally connecting information silos and realizing true end-to-end, Accenture

collaborative engineering.

Portfolio & Variant Management

Managing product portfolios and variants, as well as selecting R&D projects, presents
significant complexity for companies, requiring advanced methods to ensure efficiency and
strategic alignment. Al-driven analytics can help identify market trends, optimize resource
allocation, and evaluate trade-offs between cost, risk, and innovation potential. By leveraging
predictive modeling and scenario-based simulations, organizations can make more informed,
data-driven decisions that enhance competitiveness and reduce time-to-market.

Mehlstaubl et al. (2022) address the challenge of predicting product attribute values for multi-
variant product portfolios, where companies offer an almost infinite number of product variants
and attribute values must be determined even for previously unbuilt configurations. Their
methodical approach utilizes ML to predict product attributes based on customer feature
configurations, demonstrating that ML reduces effort and provides more accurate and faster
predictions compared to traditional rule-based expert systems. Nielsen et al. (2024) focus on
the strategic selection of industrial R&D projects, a complex task influenced by innovation
unpredictability, competition, and technological changes. They propose a multi-objective
optimization program as a conceptual quantitative framework to systematically analyze R&D
projects and optimize corporate objectives by considering project values and risks in a multi-
project context. A case study in the renewable energy sector demonstrates how this framework
provides optimal trade-offs between portfolio value and risk, enhancing transparency in
decision-making.

Program & Project Management

Managing programs and projects in the R&D of complex mechatronic systems places high
demands on planning accuracy, cross-domain coordination, and risk management. Al
applications can support this process by providing predictive insights into project schedules,
resource utilization, and potential bottlenecks across mechanical, electrical/electronic, and
software development streams. Through advanced analytics and intelligent decision support
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systems, organizations can enhance transparency, mitigate risks early, and improve overall
program efficiency and delivery reliability.

Geyer et al. (2025) present an industry case study investigating the role of LLMs in evaluating
the quality of epics, which are critical artifacts for communicating software requirements in
agile software development. Their user study with product managers indicated high levels of
satisfaction, suggesting that LLM evaluations are a viable application for improving epic quality
and consistency, while also outlining challenges such as the need for flexibility and domain
knowledge. Kumar et al. (2025) introduce a "synthetic teammate" framework to strategically
integrate GenAl into product development activities, aiming to enrich and accelerate the overall
process. This approach advocates a "human-first" methodology, positioning GenAl as a
managed team member that enhances human thinking across problem and customer
identification, ideation, concept development, and commercialization, with humans retaining
ultimate control and decision-making responsibility.

Cross-Domain Multi-Agent Applications

A key enabler of cross-domain Al applications in engineering is process automation driven by
multi-agent systems. Unlike traditional automation approaches confined to single tools or
domains, multi-agent systems provide a distributed intelligence layer that can coordinate and
execute modifications across heterogeneous engineering environments. Each agent can
specialize for a specific task while collectively working toward a common engineering
objective. By communicating and negotiating with one another, these agents enable consistent
propagation of changes, ensure alignment of artifacts across domains, and reduce the manual
effort typically required to synchronize complex toolchains.

Wang et al. (2025b) present a multi-agent framework for autonomous mechatronics design
including four agents being responsible for mechanical, electronic, control and software
engineering, respectively. Validated through the development of an autonomous water-quality
monitoring vessel, their agentic framework demonstrates how cross-disciplinary agents
combined with structured human feedback can lower expertise barriers and enable scalable,
real-world engineering innovation. A similar approach is performed by Elrefaie et al. (2025), who
choose a multi-agent framework consisting of CAD, styling, simulation and meshing agent to
generate 2D automotive concepts, transform it into a 3D CAD model and run aerodynamic
simulations for generated 3D models. Orchestration between agents can accelerate the
iterative design process while satisfying industry-standard engineering constraints. Jin et al.
(2025) propose a two-stage multi-agent framework that integrates generative design agents
with a surrogate-based drag prediction agent, enabling the automated transformation of
ambiguous requirements into validated 3D automotive concepts while balancing aesthetics
and aerodynamic performance. Ocker et al. (2025) introduce a vision language model based
multi-agent architecture for CAD that mirrors industrial development teams by combining
requirements engineering, CAD code generation, and vision-based quality assurance, enabling
iterative, user-in-the-loop creation of parametric models from sketches or textual descriptions.
Ni et al. (2025b) present CADDesigner, an LLM-powered agent that generates high-quality CAD
modeling code from textual requirement descriptions and sketches using a novel context-
independent imperative paradigm, enhanced by iterative visual feedback and a knowledge
base for continuous improvement.

Recent research published in 2025 shows a clear shift toward cross-domain multi-agent
applications in engineering and design. Multi-agent systems are increasingly being used to
connect tasks such as requirements analysis, design generation, simulation, and validation
across different domains. This trend highlights a growing focus on orchestrated, collaborative
Al agents, and it is expected that the field will gain strong traction in the coming years.
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Context Management

Cross-domain context management in engineering has gained increasing importance as
product development processes continue to grow in complexity. With rising system integration,
the need for centralized context management, data interconnectivity, and the systematic
identification of cause-effect relationships has become even more critical. In practice,
knowledge about impact chains and interdependencies between domains and disciplines is
scattered across distributed development teams. Consequently, alignment to the impact of
changes is often time-consuming and significantly slows down the overall product
development process.

Recently, advances in Al research have introduced methods that address these challenges (see
also Section Context Management). Techniques such as RAG and KGs allow for scalable and
automatable knowledge extraction and retrieval, thus enabling cross-domain and cross-
disciplinary context management. These methods connect information and artifacts from
different domains, providing engineers with faster access to relevant insights and improving
decision-making in complex development environments. The publications discussed in the
following passage illustrate how such approaches leverage Al-driven methods to interlink
heterogeneous development artifacts, ultimately accelerating knowledge access across
domain boundaries.

Tong et al. (2024) propose a knowledge recommendation framework for PLM data based on KG
and GNN. Their approach provides PLM users with accurate, context-aware knowledge access
across product domains and product views (conceptual, design, manufacturing, purchasing,
sales, aftermarket) improving efficiency in design and data modeling. Kasper et al. (2024)
introduces a graph-based data model of the digital thread that interconnects product lifecycle
phases, data models, processes, and IT systems. The authors focus on the define, design,
produce, and operate phases, demonstrating that graph databases offer superior performance
for recursive operations on networked data compared to relational approaches, and highlight
future research needs in integrating dynamic processes such as quality and change
management. Rys$ et al. (2024) propose a framework based on KGs and ontologies that captures
workflow concepts, modeling artefacts, and their interrelations, providing the foundation for
establishing traceability across artifacts as well as enabling knowledge retrieval and reuse. The
authors validate their approach using both a simple spring-mass-damper example and a real-
world engineering scenario involving a drivetrain smart sensor system, demonstrating its
applicability and benefits such as improved artifact management, reduced information retrieval
time, and enhanced cross-domain reasoning. Darm et al. (2025) propose an LLM-based
approach for the automated verification of requirement fulfillment. In their study, requirements
are represented as graph structures, and an LLM is employed to reason over these graphs. Using
two early-stage Capella SysML models of space missions with associated requirements as
examples, the model can determine whether specific requirements are satisfied by analyzing
the structural and relational information encoded in the graphs. A cognitive digital thread tool
chain to improve model versioning in MBSE is presented by Wu et al. (2025). The tool chain
supports conflict detection and resolution across diverse modelling languages and KGs
generated during versioning provide reasoning capabilities that enhance traceability and
decision support. The approach is validated using the example of a landing gear system,
demonstrating higher efficiency than conventional model versioning.

Jiang et al. (2025) present a two-stage RAG framework that integrates design principles and
sustainability strategies to provide contextually relevant, early-stage guidance for sustainable
product development, significantly improving design outcomes and supporting the transition
to a circular economy. Xiong et al. (2025) propose Domain-Rule-based RAG, a framework that
combines domain-specific KGs, rule-based reasoning, and digital twin technology to enhance
knowledge-driven aircraft design. By dynamically constructing KGs with a hybrid R2D-LLM
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approach and integrating rule-based retrieval into a RAG pipeline, DR-RAG improves retrieval
accuracy, decision transparency, and design efficiency in complex engineering contexts.

Recent advances such as RAG, KGs and GraphRAG show significant potential for automating
context management and enabling the realization of the digital thread and comprehensive,
cross-domain traceability. First applications can already be found in literature, demonstrating
their value for linking artifacts and improving decision-making and accelerated knowledge
reuse in engineering. These technologies are key to connecting domains and disciplines,
addressing one of the central challenges of modern product development. We therefore expect
a strong increase in research efforts and integration within engineering tools in this field in the
coming years.
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Use Case Summary

In the use case Section, we present a variety of Al use case classes mapped to the six core
disciplines of the V-model in product development. These use cases highlight the broad
applicability of GenAl and LLMs in engineering workflows and are summarized in Figure 23.

ain Al Applications

Change &
Config. Mgmt.

Program & Multi-Agent Context
Project Mgmt. Applications Management

/ |
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Variant Mgmt.

Documentation Generation |
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Figure 23: Overview over all use cases across the V-model's development domains
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Most identified applications focus on the generation and optimization of engineering artifacts,
leveraging existing development outputs to synthesize new content. These generative
approaches aim to accelerate and enhance tasks such as requirements formulation,
architectural design, product modeling, simulation, testing, and documentation. Creation of
traceability between development artifacts is another emerging area of research, though
current implementations are fragmented and typically confined to individual development
disciplines (FuchB et al. 2025a, Hassine 2024). A holistic, cross-disciplinary traceability solution
with development artifacts from all engineering disciplines of the V-model has not yet been
realized.

Technically, the use cases rely either on RAG-based knowledge systems or, in more advanced
cases, on fine-tuned LLMs tailored to discipline-specific data. Applying LLMs in the disciplines
captured in the upper stages of the V-model, such as requirements engineering, architecture
design, testing, and release documentation, is generally more straightforward. This is because
the artifacts in these disciplines are primarily text- or code-based, making them well-suited to
the strengths of current LLM technologies. In contrast, LLM applications in the lower sections,
especially in the design and simulation of physical components (e.g., CAD, FEM, CFD), face
significantly higher complexity. These domains require the generation of high-resolution,
physically plausible 3D data, which remains a considerable challenge for current generative Al
models. However, a noteworthy trend is the movement toward the compilability of design (see
CADQuery 2024 and Guan et al. 2025) and simulation models (see Pandey et al. 2025 and Yue
et al. 2025a), aiming to make these artifacts more accessible to LLM-driven synthesis,
optimization and generation.
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Figure 24: Results from the evaluation of 137 scientific Al publications in engineering with respect to their
vertical and horizontal maturity
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In the Section Stages of Al Readiness in Engineering, we introduced the concept of vertical and
horizontal Al integration. Figure 24 shows an evaluation of all 137 publications analyzed in the
Use Case Section in terms of vertical and horizontal maturity according to the definitions
proposed in Figure 15. 129 of the 137 publications have a higher vertical than horizontal maturity
level, meaning that their focus is more on solving domain-specific problems than on creating
cross-domain links between tools and data. This is a trend we also observe in the
implementation of industrial PoCs and use cases. On the one hand, tools and data are highly
fragmented in industrial practice, on the other hand, they are typically managed by
organizational units that operate within separate areas of responsibility. This means that the Al
use case landscape is also oriented toward the fragmentation of tools and data and hierarchical
organizational structures. As a result, many Al use cases are being implemented, which
ultimately lead to incremental accelerations of domain-specific sub-processes in product
development, but do not sufficiently exploit the overarching potential for accelerating overall
product development through the implementation of horizontal Al use cases. The realization of
the target vision of a digital thread in product development has been discussed for several
decades and is considered desirable. With the advent of GenAl and Agentic Al, the incentives
for realizing the digital thread are now amplified, as massive reductions in product development
cycles are made possible by horizontal Al-fication of engineering.

It is also noteworthy that the current development of GenAl use cases remains largely intra-
disciplinary, with efforts primarily concentrated on advancements within distinct engineering
fields. Yet, as engineering processes become more connected, the potential for cross-
disciplinary use cases across mechanical, E/E and software development will grow. Promising
future applications include change and configuration management, cross-domain context
management, and integrations with supplier and customer systems (e.g. for cost estimation,
demand forecasting and supplier selection use cases), as well as downstream value chain
processes such as production planning, M-BOM generation, maintenance, and service.

A closer analysis of the summed up vertical and horizontal maturity levels shown in Figure 24
(i.e., the publications located in the upper right area of Figure 24) reveals a clear trend. The
simulation (Yue et al. 2025b, Feng et al. 2025, Chen et al. 2025a, Chen et al. 2024), design (Wu
et al. 2024a, Qin et al. 2024), and cross-domain use cases (Jin et al. 2025, Elrefaie et al. 2025)
with the highest maturity levels all represent multi-agent systems that automate complex, multi-
stage development processes through task distribution, tool interoperability, and agent-based
communication. This demonstrates that Agentic Al with its recently acquired capabilities has
the potential to significantly increase the degree of automation in development processes.

In the following section, we therefore provide an outlook on multi-agent systems, illustrating
how their introduction into engineering affects various dimensions and which measures
companies must now implement to fully and rapidly leverage these potentials.

To conclude this chapter, we provide an overview of the Al use cases developed by Accenture
and already implemented in industrial environments. Figure 25 summarizes the Al use cases
developed and implemented by Accenture in the engineering sector and maps them to the
domains of the V-model.
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Figure 25: Integration of industrial Al use cases developed by Accenture into the V-model
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Agentification of Engineering

In the previous Section, we demonstrated that numerous Al use cases are already being
employed in literature and industry, but the use case landscape remains fragmented and largely
focused on vertical Al integrations. Recent research into GenAl and Agentic Al has massively
expanded the portfolio of Al capabilities that have so far been not yet applied in current product
development processes. In this Section, we therefore show how fragmented use case
landscapes can be overcome by operationalizing these capabilities and providing engineers
with Al solutions that ensure a holistic application in the product development process.

As indicated in Figure 2, GenAl and Agentic Al bring new capabilities that are particularly
important for engineering of the future. These include

1. Planning & Reasoning: capability to answer questions that require complex, multi-step
processes with intermediate steps, enabling systematic problem-solving beyond fast,
heuristic responses (Li et al. 20259, Sui et al. 2025)

2. Orchestration: capability to automatically coordinate multiple LLM agents and tasks
including state tracking, dependency management, independent validation, and
compensatory rollback to ensure consistent, reliable execution across distributed
workflows (Chang & Geng 2025)

3. Tool Interoperability: capability to discover multiple tools, orchestrate their use, and
reliably invoke them to enable multi-step workflows across environments (Xu et al.
2025b)

4. Multi-Agent Collaboration: capability to enable multiple LLM-based agents to
coordinate and manage joint objectives through structured collaboration channels so
that they jointly plan, exchange knowledge, and make collective decisions to achieve
shared goals (Tran et al. 2025)

5. Context Management: capability to preserve essential constraints, state history,
dependencies, and reasoning justifications so agents can reliably track, recall, and use
context across multi-step workflows, especially when failures or replanning occur
(Chang & Geng 2025)

6. Memory: capability to store, manage, and retrieve past information including
conversation history, task states, and reasoning traces so that agents and multi-agent
systems can maintain long-term context, support consistent decision-making, and
enable continual learning across interactions (Zhang et al. 2025d)

These capabilities have far-reaching implications for the engineering of the future. Table 2 lists
the capabilities and describes their implications for the engineering of the future. It shows that
multi-agent systems offer great potential for automation in product development, especially
when end-to-end understanding of product architectures, system and process modeling, and
access to metadata (stored in graph and vector databases) and engineering data (stored in
individual tools and accessible using tool interoperability capabilities) are enabled. A high-level
architecture that exploits the potential of the listed capabilities is shown in Figure 26. The
capabilities listed in Table 2 are assigned to the system elements.
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Table 2: Implications of GenAl and Agentic Al capabilities on engineering

Capability Implication on engineering

The development of complex mechatronic products is a highly networked

process whose complexity must be mastered through multi-stage

decomposition and interface definitions across multiple engineering

domains and levels. Leveraging planning and reasoning capabilities can

Reasoning support identifying dependencies and constraints, and dynamically
generating and refining product structures, requirements, and design
alternatives across the entire lifecycle.

Planning &

High-level engineering tasks such as implementing product changes
involve many steps that must be planned in fine detail and managed
adaptively. Breaking down an overall task into subtasks and processing
. them sequentially while monitoring overall progress and possible
Orchestration  jopendencies are essential components of engineering activities. With
orchestration capabilities, it will be possible in the future to orchestrate
complex tasks, continuously monitor their progress, and proactively draw
attention to risks.

Engineering toolchains from companies with complex product portfolios
often consist of several hundred or even thousands of tools, whose
interoperability is ensured by point-to-point integrations or by connection
to lifecycle systems. With interoperability capabilities and agentic

Interoperability Communication protocols such as MCP, data can continue to be managed
in tools and retrieved or modified from the outside. This will ensure
compatibility between multi-vendor toolchains and Al applications, while
at the same time increasing the requirements for standardized data
management.

As engineering tasks become more complex and orchestration efforts

increase, so does the need to deploy multiple interacting agents that work

together to achieve an overarching goal. Hierarchical agent architectures

consisting of an orchestrator with an end-to-end product view and
Multi-Agent multiple subagents that communicate bidirectionally with the
orchestrator are ideal for this purpose. Together with planning &
reasoning, orchestration, and tool interoperability capabilities, entire
multi-agent systems for engineering can be designed that automate cross-
domain and cross-tool processes, with agents reacting adaptively to
states and unplanned events.

Collaboration

The provision of context is particularly important for complex product
developments, since domain-specific processes, data and syntax play a
crucial role. For agents to understand complex systems, architectures,
Context processes, dependencies, and structures, information must be provided
centrally and be reflected in graph databases, vector databases or process
and system modeling. Access to this data and gaining a higher-level
understanding of the overall system structure and processes for
developing or modifying the system determines the degree of end-to-end.

Management

Additional context that is valuable for performing engineering tasks
comes from engineers' historical prompt histories, design rationales, and
decision logs. By leveraging the memory capabilities of LLMs and Agentic
Al, engineering teams can maintain long-term context across
Memory development tasks and cycles, ensure consistent and traceable decision-
making, and enable continual learning from previous designs and
problem-solving episodes. This persistent, structured memory supports
complex, multi-stage product development by reducing knowledge loss,
accelerating iteration, and improving cross-domain collaboration.
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Figure 26: High-level engineering Al architecture including a hierarchical multi-agent system

A user interface provided on the Al platform serves as the interface between engineers and Al
applications. This allows access to individual Al use cases as well as a hierarchically structured
multi-agent framework that can be used for complex end-to-end engineering tasks. The
hierarchical multi-agent system consists of a high-performance orchestrator with reasoning
and orchestration capabilities and further agent levels, which are responsible for domain- and
tool-specific tasks. In the context management modules, higher-level metadata is
systematically managed and made available in graph and vector databases for quick retrieval
by agents. Information about product structures, systems and process modeling from MBSE
tools is also provided to give agents an overview of the progress of the product development
process and complex relationships within the models. Each agent level is linked to a context
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module in which data and models are made accessible to the respective agents. The
orchestrator requires an end-to-end product view and must therefore access MBSE models and
product data that holistically describe the entire product development process. Super agents
provide an overview of domain-specific data products and are enriched with domain-specific
regulations, product structures, and data architectures. The executors are directly connected
to the tools via MCP servers and have tool-specific information in their context modules, such
as data structures, formats, and API calls, which they can use to access and modify tool data.

In the automated execution of cross-domain engineering tasks by multi-agent systems, it is
essential to introduce Human-in-Control checkpoints. These are designed to review, assess,
edit, and ultimately approve intermediate and final results produced by the multi-agent system.
It is crucial to ensure traceability, explainability, robustness, and reliability continuously
throughout the process. Thus, humans do not remain merely in the loop but in control. This
approach requires that employees are proficient in working with Al, able to interpret and
validate its results, and thus capable of monitoring compliance and technical feasibility
throughout the entire product development process.

Figure 27 shows a simplified example of how multi-agent systems could be embedded in
engineering processes in the future.
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Figure 27: Exemplary and Simplified Multi-Agent Engineering Workflow consisting of a three-level
Hierarchical Multi-Agent Architecture, Context Modules, and Tool Interoperability adapted from Larichev
et al. (2025)
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The engineer sends an abstract prompt to the orchestrator for the development of a technical
system, whereupon the orchestrator uses the provided system context to break down the
abstract development task and delegate it to domain-specific sub-agents. These agents further
enrich the instructions with domain-specific context and then delegate tasks to the executor
agents. The executor agents are connected to the appropriate tools via MCP servers, are familiar
with the data structures and formats stored in the tools and can perform the development tasks
in the tools via API calls. The agents not only communicate top-down, but also inform the
corresponding higher-level agent about progress, quality, and the result of the task processing.
Bidirectional communication between the agent layers and within one agent layer (see agentic
communication layer) is necessary to delegate development tasks, but also to ensure
satisfactory task completion and bidirectional information exchange. Between each information
transfer across the agent layers, Human-in-Control checkpoints are integrated, allowing
humans to influence task execution by providing direct feedback and issuing instructions for
rework. Each agent has quality criteria that it checks after the subordinate agent has completed
its task and requests rework if necessary. This enables the orchestrator to identify conflicts
between the work results of two subordinate agents at an early stage, which in the case of
manual product development would only have been noticed in later product development
phases of verification and validation, leading to further cost-intensive iterations in the product
development process.
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Contemporary engineering environments face increasing product complexity and
workforce scarcity, coupled with the demand for accelerated development cycles,
strict quality adherence, and reduced manual intervention. To meet these challenges,
multi-agent systems offer a scalable and intelligent solution in which Al agents
collaborate to automate processes, streamline workflows, and support decision-
making throughout the product lifecycle. These agents do not function as isolated
tools but interact dynamically. For instance, one agent may manage design
modifications in CAD, another may validate simulation models, and a third may
extract relevant data from documentation. Together, they establish workflows that
shorten iteration cycles and ensure compliance with engineering standards.

To demonstrate this, the Accenture team has developed a multi-agent system
capable of integrating with platforms such as Siemens Polarion, 3DS CATIA, and Altair
HyperWorks. Each integration features specialized Al capabilities for analysis, design,
and simulation. The corresponding agents that control these tools maintain tool-
specific context within RAG vector databases, enabling them to access information
on engineering task execution via API calls. This coordinated orchestration allows
agents to make autonomous decisions and transition seamlessly between tasks and
tools. The framework enhances operational efficiency, reduces complexity, and
prevents the execution of non-value-adding activities.
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Our multi-agent system follows a fully software-agnostic approach, integrating
seamlessly into existing engineering toolchains. Deployment options are flexible,
offering both cloud-based and fully on-premises solutions to meet client needs. In
sectors such as aerospace and defense, on-premises implementations are essential
to comply with strict data sovereignty requirements. By automating routine tasks
across engineering domains, engineers are empowered to focus on product
evaluation and actual value creation. The multi-agent system accelerates time to
market, improves product quality, reduces effort, and can be tailored to customer-
specific data and requirements.
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The Future of Engineering

Engineering is at a turning point. Al is not only transforming individual tools or methods but also
reshaping the organizational elements that determine the success of complex product
development. We use the Accenture Butterfly Model (see Figure 28) as a template to discuss
the effects of Al on four key organizational elements:

Elimination of fragmentation
through data products and
traceability

Process

Increased agility and reduced
cycle times through adoption of
cl/cb

Accelerating human work through Linking systems and tools with
Al with human-in-the-loop and open interfaces and
human-in-control approaches standardized communication

Figure 28: The Accenture Butterfly Model as a basis for assessing the impact of Al on organizational
elements in engineering

Process

Processes are being reimagined and transformed to accelerate development cycles and
improve quality. Al will massively accelerate product development processes. While individual
engineering domains will benefit from Al-driven automation and optimization, the larger impact
will stem from horizontal Al use cases that are applied across engineering domains. The
enrichment of agentic systems with system-wide context will drive a fundamental shift from
document-centric to model-based product development (MBSE), enabling horizontal
integration across engineering disciplines. This transformation will lead to three key effects:

1. Tighter integration of domains and disciplines (mechanical, E/E, software), enabling
continuous compatibility checks and thereby the early correction of inconsistencies
(Zhang et al. 2025e).

2. Massive reduction of iteration cycle times, with a shift from the traditional V-model
towards a CI/CD-inspired approach, significantly increasing agility. Expansion of design
space exploration, as accelerated iterations allow multiple design alternatives to be
developed in parallel (Zampetti et al. 2023).
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3. Asaresult, critical design decisions can be deferred to later stages with higher product
development maturity levels, fostering innovation and the exploration of previously
untapped product variants (Zhang & Zhang 2025).

Beyond engineering itself, Al will enable a higher degree of connectivity across the entire
enterprise process landscape. Feedback loops from manufacturing, supply chain, and service
can be directly incorporated into development, creating a Closed Loop Engineering (Demartini
et al. 2019) paradigm.

Data

Data becomes a strategic asset, providing the context, consistency and accessibility required
for intelligent workflows. Data is the fuel for the digitalization and Al enablement of complex
product development processes. In the future, companies will only succeed in developing
advanced mechatronic systems if they master a set of data-driven capabilities:

1. Alignment of hierarchical data architectures with the engineering toolchain, ensuring
that information flows seamlessly across tools and disciplines.

2. Reduction of the number of data formats and tools while simultaneously driving the
standardization of data and interfaces.

3. Continuous consolidation, documentation, and cataloging of consumable and
machine-readable data products, making them accessible for Al use cases (Jahnke &
Otto 2023).

4. Ensuring data compliance with regulatory requirements and defined data models, for
example, through automated policy enforcement.

5. Realization of MBSE and the connection of standardized data models with meta- and
system models (Zhang et al. 2025e).

6. Application of Al not only for horizontal and vertical use cases, but also for the
preparation, cleansing, and enrichment of datasets themselves (Singh 2023).

In this paradigm, data evolves from being a byproduct of engineering activities to a strategic
enabler of Al-driven development. Organizations that successfully industrialize their data
management practices will gain a decisive competitive advantage in the next generation of Al-
enabled product engineering.

People

People are at the center, as adaptability, talent development, and close collaboration between
humans and machines are key to success (Shao et al. 2025). Al will not replace human work in
product development but rather complement and significantly accelerate it (Brynjolfsson et al.
2025).

Historically, the evolution of product creation has been shaped by rising complexity. In the shift
from craftsmanship to mass production and later to increasingly complex mechatronic systemes,
organizations attempted to master this complexity by decomposing product development into
smaller subprocesses. As a result, engineers have transformed from generalists in early
manufacturing into highly specialized experts with narrow but demanding areas of
responsibility.

Al enablement marks a turning point in this trajectory. In the future, the ability to design
products via prompt-driven development will democratize product creation. Creative tasks will
gain importance, while administrative and operational work will diminish. Faster realization of
product ideas and deeper exploration of design spaces will allow engineers to develop
unconventional product concepts to higher maturity levels and compare them with
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conventional designs (Jiang et al. 2024). This will lead to increased innovation capacity and a
shift in the boundaries of what is technically feasible.

At the same time, Human-in-the-Loop and Human-in-Control will remain essential. While many
administrative and operational activities offer potential for automation, engineers must be
empowered to evaluate and approve plausibility, validity, reliability, safety, and compliance of
Al-generated content. This requires training and change management on the responsible and
reliable use of Al, ensuring explainability, and embedding human checkpoints into digitized
workflows (Lee et al. 2025). Ultimately, accountability for faulty designs cannot be delegated to
algorithms or agents, it will remain with organizations and individuals.

Technology

Technology delivers platforms, software and architectures that enable Al-driven innovation and
embed it sustainably within the organization. Over the coming years, the very platforms and
tools that underpin engineering will themselves be profoundly reshaped by Al enablement.

Through the democratization of product development, user interfaces, as illustrated in Figure
26, will be consolidated into unified platforms. Tools will increasingly be operated via prompts,
meaning that individual tools may no longer require stand-alone user interfaces but instead
provide their functionality through integrated services (Riche et al. 2025). As a result, the focus
for tool vendors will shift toward delivering open and high-performance input/output interfaces
(e.g., APIs, MCP servers) that allow access to modular and configurable data architectures.
These criteria will become decisive factors in the evaluation and selection of tools and vendors.

Al enablement will also transform data representations and storage. Automated generation of
knowledge graphs and vector databases based on development data stored within platforms
and tools will provide the contextual foundation required by agentic systems interacting
directly with these tools. At the same time, built-in data quality monitoring systems will
continuously oversee data structures, enforce policies, and ensure reliability, machine-
readability, and completeness.

Together, these developments will redefine the role of technology in engineering. The tool
landscape will evolve from a set of isolated tools into an intelligent, interconnected ecosystem
that empowers Al-driven product development.
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From Vision to Execution

The previous Sections have shown which dimensions should be considered in an engineering
Al transformation and that there is currently an imbalance between vertical and horizontal Al
use cases. Based on these findings, hypotheses have been formulated as to the direction in
which elements of engineering (processes, data, people, technology) will develop. Finally, this
Subsection presents a high-level roadmap with successive steps that will transform this process
from a vision into execution. The roadmap is divided into six steps that describe the
transformation process from a fragmented tool and data landscape to an Al-native engineering
toolchain, as shown in Figure 29.

Define the North Star &
Establish Alignhment

North Star Vision: Define long-
term goal
Strategic Breakdown: Derive
milestones and quick-wins
Baseline Assessment: Analyze
current state: toolchain, data
landscape, processes,
organization
Stakeholder Alignment:
Establish shared understanding
of Al’s role
Use Case Funnel: Collect,
structure and cluster potential
Al use cases across V-Model

Implement High-Value Al
Use Cases

Data Quality Mgmt.: Introduce
quality metrics & implement
metadata management
Architecture Implementation:
Deploy architecture & build
MCP servers
Context Modules: Build context
modules (RAG & GraphRAG) for
key domains
Governance Activation: Roll
out role- and rights-based
access & continuously monitor
governance compliance

Automate, Reason &
Orchestrate

Agentic Architecture:
Transform multiple domain-
specific use cases to multi-
agent systems
Al-Assisted Decisioning:
Implement Al solutions in end-
to-end engineering processes
such as Change & Config. Mgmt.
Adaptive Workflows: Enable
self-adjusting workflows based
on historical performance data
Human-in-the-Loop: Ensure
explainability, governance
control mechanisms and define

human decision gates

Build the Foundation &
Define Architecture

Toolchain Definition:
Consolidate redundant tools &
define strategic toolchain
Data Architecture: Define data
sources, formats, flows & storage
Interoperability: Align on
standards & protocols (MCP)
Use Case Selection: Select high-
priority Al use cases (vertical &
horizontal)
Governanve & Infrastructure:
Define Gov. framework and
select Al platform

Scale, Connect &
Contextualize
Context Management: Connect

context modules and link
integrated data

System Level Interoperability:
Synchronize data and metadata
across tool and domain
boundaries

Federated Learning: Introduce
decentralized model fine-tuning
to maintain data sovereignty
AlOps environment: Integrate
automated monitoring and
feedback loops for continuous
improvement

Continuous Improvement
& North Star Realization

End-to-end Engineering
Integration: Multi-agent system
supports large parts of
engineering with defined human
decision gates
Self-Learning System: Agents
share context and lessons
learned autonomously
Interoperability: Most
engineering tools connected to
multi-agent system
Governance Automation: Al-
based monitoring of data, model
and process compliance
established
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Figure 29: Proposed roadmap for achieving an Al-native engineering toolchain

Define the North Star & Establish Alignment: The first step is to reach a consensus on
the long-term goal of Al transformation. Stakeholders develop a shared understanding

> (]
accenture df!sH
el

| 4
~Z Fraunhofer
ISST




of the transformative power and role of Al and, based on this, draw up a strategic plan
with milestones and identify quick wins. The quick wins are collected, structured, and
clustered in the form of a use case funnel and include various Al use cases across the
entire product development process. At the same time, the current status of the
engineering toolchain, data landscape (data sources, data flows, data architectures,
data catalogs), processes, and organizational structure is analyzed, and weaknesses
that can be remedied with moderate effort are identified.

Build the Foundation & Define Architecture: In the second phase, the foundations for
an Al transformation are established. This involves assigning strategic tools to the
product development process and sorting out legacy tools that do not meet the
requirements of Al-driven engineering in terms of interoperability (APIs) and
standardization (certificates & data formats). The aim is to prepare tools, data,
processes, and people for Al-driven engineering, reduce complexity, and eliminate
redundancies. Decisions also need to be made regarding the governance framework
and the selection of the Al platform. The use case funnel defined in the first phase is
refined and the use cases to be implemented are specified. It is particularly important
to ensure that a balance is struck between vertical and horizontal Al use cases and that
the use cases can be integrated with each other in the future to enable consistency
throughout the entire product development process.

Step 1 Step 2 Step 3
North Star Vision & Use Case Use Case & Strategic Embedding
Brainstorming Feasibility Analysis & Use Case Linking

Filtering criteria Filtering criteria

- ROI, strategic relevance, « Integration into the overall network, scalability,
technical feasibility, tool multi-agent integrability, governance
integration compliance

Figure 30: Strategic use case selection approach considering horizontal and vertical balance
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Figure 30 shows an approach for selecting Al use cases in engineering, taking various
criteria into account. In the first step, different use cases are identified, the number of
which is then incrementally reduced until, in the end, a homogeneous network
consisting of horizontal and vertical Al use cases results. These use cases are both
technically feasible and offer a quick ROl but can also be connected to each other within
multi-agent systems.

Implement High-Value Al Use Cases: In the third phase, the Al use cases are
implemented and the five dimensions of the framework presented in Section Framework
for Scalable Al in Engineering are continuously monitored. With the implementation of
the use cases, data quality is improved, metrics for data quality are established and
monitored, and consistent metadata management is introduced for each use case. Tool
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interoperability is ensured through the implementation of MCP servers, and context
modules in the form of vector and graph databases are introduced for each use case as
needed. Compliance with the defined governance framework is also ensured by
introducing a rights and roles concept for the Al platform that guarantees needs-based
access to data and Al use cases.

4. Scale, Connect and Contextualize: As the implementation of Al use cases progresses,
greater emphasis is being placed on interconnection and contextualizing Al use cases.
In the fourth phase, the context modules will therefore be linked together, connections
between use case-specific graph and vector databases will be established, and the goal
of system-wide interconnection of data, processes, and tools will be pursued. System-
wide interoperability of use cases is ensured through connections to MBSE tools, while
domain-specific teams are given the opportunity to retrain the models in order to
increase the performance of the use cases. The Al platform focuses on system-wide,
automated monitoring in line with the defined governance framework and the
establishment of feedback loops for the continuous improvement of individual use
cases and their interoperability.

5. Automate, Reason & Orchestrate: In the fifth phase, the focus is on further
interconnection of the use cases by setting up the multi-agent system. The goal in this
phase is to create the higher-level agent layers from Figure 27 and to intelligently control
the domain-specific use cases at the lower level (executed by executors from Figure 27).
This enables the system-wide integration of the agentic Al capabilities from Figure 26
into the product development process and allows the introduction of cross-domain
reasoning and orchestration capabilities. Cross-domain engineering processes such as
change and configuration management can thus be supported and accelerated by Al,
with the validity of the respective results of individual agents being ensured by human
control mechanisms and decision as well as approval gates (human in control). The
implementation of higher-level agent layers significantly increases the degree of
automation in product development and enables state-dependent, adaptive workflows.

6. Continuous Improvement & North Star Realization: In the final phase, continuous
improvements are implemented in order to converge towards the defined North Star
vision. The number of connected tools is expanded, new use cases are implemented,
and further automation is pursued with regard to interoperability, governance, and self-
learning systems. Interfaces to production and feedback loops from production, use,
maintenance, and logistics are also analyzed in this phase so that engineering is
embedded in the company's entire Al ecosystem.

Comment on Al Adoption in Engineering

One cornerstone of the transformation toward Al-native engineering lies in turning
today’s fragmented data and tool landscape into an integrated, interoperable digital
foundation. This transformation requires structuring engineering data for machine
readability, adopting open APls, and applying standards such as MCP and A2A to
enable seamless cross-domain collaboration between Al agents. Unified namespaces
and common data models (e.g., ISO 10303 STEP, OPC UA, SysML v2) are critical to
ensure consistent interpretation and exchange of information across systems,
domains and disciplines.

Kathrin Schwan
Together with a clear governance framework and the adoption of new ways of working Lead Al & Data DACH
within an Al operating model, this digital foundation provides the backbone for scaling Accenture

Al in engineering. It enables organizations to move beyond isolated proof-of-concepts
predominantly vertical integrated toward a scalable, domain-spanning application of
Al that drives automation, generates measurable value, and fosters innovation across
the entire engineering lifecycle.
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Companies engaged in complex product development are increasingly striving to automate
their R&D processes and transform them through the integration of Al. This transformation
promises substantial acceleration of product development cycles, higher product quality,
improved compatibility between mechanical, E/E and software components, and enhanced
capabilities for design space exploration. While numerous approaches for embedding Al into
engineering already exist, most organizations have not yet established a comprehensive
management framework or achieved large-scale deployment of this technology.

This white paper introduces a framework for scalable Al applications in engineering, designed
to address the unique challenges of product development environments. Considering the
specific boundary conditions in engineering, such as fragmented tools and data landscapes,
heterogeneous data formats, stringent governance requirements, complex tool
interoperability, and high interdependencies between engineering domains along the V-model,
the framework identifies key dimensions that must be addressed to ensure scalable and
sustainable Al integration. Following terminology from Systems Engineering, the framework
distinguishes between vertical and horizontal Al use cases, depending on their level of domain
specificity and cross-domain applicability.

Based on an extensive literature review covering Al use cases across all domains of the V-model,
the paper highlights that most existing Al applications currently exhibit a high vertical maturity
but limited horizontal integration. In other words, they are typically designed around specific
tools and data sources within isolated domains, with insufficient focus on cross-domain
networking and knowledge sharing. This pattern mirrors the current state of industrial Al
adoption, which is often constrained by tool and data fragmentation as well as organizational
silos. Consequently, the paper argues that Al transformation must be driven by top
management, ensuring a balanced portfolio of vertical and horizontal use cases and promoting
integration across domains to unlock system-wide benefits.

A further key insight of the study is the emerging role of multi-agent systems in engineering,
which enable higher levels of automation and coordination between Al-driven tasks. This white
paper illustrates how such systems can be applied in future engineering environments and
analyzes their impact across four dimensions, namely processes, data, people, and technology.
Finally, a roadmap is presented that outlines the path toward scalable Al deployment in product
development.

In conclusion, the paper recommends a strategic and iterative approach to Al transformation:
selecting and developing use cases in alignment with the proposed framework, progressively
interconnecting them into multi-agent systems, and ensuring governance and scalability from
the outset. To achieve lasting success, organizations must also make deliberate choices
regarding the right tools and technologies and understand the correct sequence for generating
and structuring the required engineering artifacts. Providing contextual information across
different system levels is essential to enable consistent interpretation and automated
reasoning. Furthermore, the long-term integrability of initially developed use cases must be
safeguarded to ensure they can evolve into interconnected multi-agent ecosystems rather than
remain isolated solutions. Finally, human checkpoints embedded into agent-driven workflows
play a pivotal role in maintaining oversight, trust, and accountability, ensuring that automation
augments rather than replaces engineering expertise.
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Abbreviation Meaning

A2A Agent-to-Agent Protocol

Al Artificial Intelligence

BOM Bill of Material

CAD Computer-Aided Design

CASE Computer-Aided Software Engineering
CFD Computational Fluid Dynamics
CNN Convolutional Neural Network

DL Deep Learning

E-CAD Electrical Computer-Aided Design
EDA Electronic Design Automation

FEA Fixed Entity Architecture

FEM Finite Element Method

FL Federated Learning

GAN Generative Adversarial Network
GenAl Generative Artificial Intelligence
GNN Graph Neural Network

GTO Generative Topology Optimization
HiL Hardware-in-the-Loop

HDL Hardware Description Language
KG Knowledge Graph

LLM Large Language Model

LSTM Long Short-Term Memory

MBSE Model-based Systems Engineering
MCP Model Context Protocol

M-CAD Mechanical Computer-Aided Design
PCB Printed Circuit Board

PDM Product Data Management

PINN Physics-Informed Neural Network
PLM Product Lifecycle Management
PMT Processes, Methods & Tools

RAG Retrieval-Augmented Generation
RC Resistor-Capacity

RTE Register-Transfer Level

ROI Return on Investment

SiL Software-in-the-Loop

SLM Small Language Model

SysML System Modeling Language

UML Unified Modeling Language
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