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Executive Summary  

Artificial Intelligence (AI) has the potential to fundamentally transform new product 

development. Applied effectively, it can automate and accelerate engineering processes end 

to end, from early concept design to product release. Yet this transformative power can only be 

realized if companies act early and decisively to establish the right technical, organizational, 

social, and process foundations. Lacking a robust foundation, AI remains confined to pilot 

successes far from achieving enterprise-wide value. 

This white paper presents a scalable framework for AI adoption in engineering, designed to help 

organizations move beyond fragmented pilot projects toward an enterprise-wide approach. The 

framework enables leadership to align AI development with strategic business goals while 

preventing the proliferation of disconnected use cases that dilute value and create complexity. 

A central element of the white paper is the classification of AI use cases into two 

complementary categories. 

• Vertically integrated AI use cases focus on optimizing specific processes or domains, 

such as automated design iterations or generation of domain-specific development 

artifacts. 

• Horizontally integrated AI use cases connect data, tools, and engineering domains, 

enabling knowledge sharing, system-level optimization and application across domain 

and tool boundaries. 

While most organizations today concentrate on vertical applications, the greater long-term 

opportunity lies in horizontal integration. By linking product requirements, architecture, design, 

simulations, and test artifacts, horizontally integrated AI can unlock cross-domain synergies, 

accelerate the product development process, and reshape how engineering value is created. 

To capture this potential, technology and organization must evolve in tandem. Companies 

should initiate high priority use cases early to generate learning effects and tangible ROI. At the 

same time, they must invest in AI-ready infrastructure that ensures interoperability between AI-

native platforms and the existing engineering toolchain. Data quality and accessibility become 

strategic assets, requiring the creation of high-quality data products and the deployment of 

context modules in the form of knowledge graphs and vector databases to connect data, tools, 

and processes. Finally, a robust governance framework is essential. Clear guidelines for AI 

development and lifecycle management will secure alignment with corporate strategy, 

maintain compliance, and prevent uncontrolled proliferation of use cases. 

To ensure the long-term scalability of AI initiatives in new product development, various 

dimensions must be considered. Unmanaged initiatives will lead to AI fragmentation along 

existing tools and data silos, preventing the full potential of AI in engineering from being 

realized. 

  
Companies that act now to establish these technological, organizational, and governance 

foundations will not only accelerate their product development cycles but also create a 

sustainable competitive advantage. Those who delay risk being locked into fragmented 
solutions and losing pace in an increasingly AI-driven engineering landscape. 
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Over the past decades, engineering has undergone a fundamental transformation driven by 

digitalization. The introduction of computer-aided design (CAD), product data management 

(PDM) and product lifecycle management (PLM) has evolved into the vision of the digital thread, 

an interconnected data backbone that links data, information and processes across the entire 

product lifecycle, from concept to end-of-life. This digital continuity provides engineers with 

unprecedented visibility and traceability, enabling faster innovation, improved quality, and 

more efficient decision-making. Many companies still struggle to realize an end-to-end digital 

thread and attempt to manage the complexity of modern cyber-physical products with rigid, 

sequential development methodologies and fragmented tool and data architectures, resulting 

in long development cycles and inefficiencies. 

In parallel, AI has matured from experimental research in pattern recognition and machine 

learning (ML) into a practical tool that enhances nearly every aspect of engineering. In recent 

years, the emergence of generative AI (GenAI) and Agentic AI has marked a new phase, where 

AI is no longer only supporting decision-making but actively creating development artifacts 

across the product development process such as requirement models, product architectures, 

CAD designs, simulations and test results. This progress is reshaping how engineering teams 

work, collaborate, and innovate in the future. 

To leverage AI in engineering at scale, however, organizations require a structured approach. 

This white paper aims to provide decision-makers, engineers, and other stakeholders with 

guidance in the rapidly evolving landscape of AI applications in engineering. In this Section, 

key concepts are introduced, a scalable framework for the adoption of AI in engineering is 

presented, and a maturity model based on the automation levels of autonomous driving (SAE 

2014) is developed to classify AI applications according to their vertical and horizontal maturity. 

These foundations are then applied in the subsequent Section “Use Cases” to discuss the 

current state of the art and to analyze 137 research papers. In the “Outlook” Section, we 

formulate hypotheses on how engineering will evolve under the influence of AI, GenAI, and 

Agentic AI, and outline the measures companies should take in the short and long term to 

accelerate their product development processes and eliminate inefficiencies. 

Digital Thread 

 

The Digital Thread represents a core concept for the integrated flow of product data across the 

entire product lifecycle. By collecting and networking heterogeneous product data across 

different product representations, a Digital Thread ensures that information and data flow 

seamlessly along the value chain, creating transparency, traceability, and collaboration 

Definition of Digital Thread
A Digital Thread is a framework that seamlessly connects data, models, and
processes across the entire product lifecycle, from ideation and product
development to manufacturing and service (Abdel-Aty & Negri 2024). It enables
the continuous flow and accessibility of information by integrating previously
siloed systems and data sources, thereby overcoming data fragmentation across
departments and disciplines. By providing a unified, traceable, and context-rich
representation of a product’s digital history and evolution, the Digital Thread acts
as the future data backbone of engineering, manufacturing, and services. It
supports real-time decision-making, improves collaboration, and lays the
foundation for advanced capabilities such as GenAI applications and closed-loop
engineering feedback.
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between engineering disciplines. Accordingly, a Digital Thread facilitates the exchange of 

critical data in product development and enables additional services, the development of new 

features and the rapid identification of optimization potential (Ghosh et al. 2025). A simplified 

visualization of these interconnected product representations is shown in Figure 1. 

 

Figure 1: Simplified Visualization of Connecting Product Representations via the Digital Thread 

According to Abdel-Aty and Negri (2024), the main characteristics of a digital thread can be 

summarized as follows:  

• Integration Across Lifecycle Stages: it links engineering, production, supply chain, 

and service data, enabling seamless collaboration. 

• Real-Time Data Sharing: it provides up-to-date information access across 

departments and disciplines. 

• Improved Decision-Making: it enhances efficiency, quality, and predictive capabilities 

across product development and operations. 

• Foundation for Digital Twin: it supports the creation of a digital twin as a virtual 

representation of the physical asset. 

While closely linked, it is important to distinguish the Digital Thread from the Digital Twin. The 

Digital Twin focuses on creating a virtual product-centric representation of a physical asset, 

whereas the Digital Thread focuses on the flow of information and data across the product 

lifecycle. Companies developing mechatronic and cyber-physical products as well as research 

institutes recognize the necessity of establishing Digital Threads, which is why most recent 

publications examine the significance of the Digital Thread (Bianchini et al. 2024, Abdel-Aty and 

Negri 2024) and show the connections to AI applications (Zhang et al. 2024). Holterman et al. 

(2024), for example, systematically show how the establishment of Digital Threads contributes 

to the robustification of supply chains in various industries in the US economy and name AI as 

a technology that leverages the Digital Thread. Although the concept of the Digital Thread has 

been researched, solutions for its realization are already offered by software vendors, and the 

concept theoretically promises significant acceleration of product development processes, 

companies in industrial practice still struggle with scalable implementation. Data is typically 

distributed across a fragmented IT and tool landscape, difficult to access, ambiguous, 

incomplete and weakly connected across different engineering disciplines (Hedberg et al. 
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2020, Kwon et al. 2020). These circumstances make it difficult to establish seamless workflows 

across tool and engineering discipline boundaries and require a lot of manual work. This is 

particularly noticeable in change management processes, where cross-disciplinary work on 

different engineering artifacts often must be carried out iteratively and the identification of the 

affected configuration elements or impact chains is time-consuming and resource-intensive 

(Burggräf et al. 2024).  

Building on these challenges, AI technologies and its powerful subfields GenAI and Agentic AI 

are increasingly recognized as enablers for realizing Digital Threads in practice. By addressing 

issues of data fragmentation, semantic alignment, and workflow automation, AI can unlock the 

potential of Digital Threads and make them scalable across industrial environments. The 

following Subsection therefore introduces and distinguishes the terms AI, GenAI, and Agentic 

AI and situates their role in the product development process. 

AI in Engineering 

For a long time, the application of AI in the product development process played only a minor 

role. However, in recent years, breakthroughs in the fields of GenAI and Agentic AI have marked 

a turning point. These advances have been accompanied by significant expansions in AI 

capabilities, which in turn have massively broadened the range of possible applications of AI 

algorithms within engineering contexts. 

 

Figure 2: Evolvement of AI Algorithms and corresponding Capabilities 

The evolution of AI and the corresponding extensions of its capabilities that emerged with the 

establishment of distinct AI subfields are illustrated in Figure 2. AI can be understood as an 

umbrella term for a wide variety of applications in which the automated execution of tasks is 
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subfields demonstrate different capabilities and impose varying requirements on the 

underlying datasets. 

ML emerged as a paradigm focused on identifying patterns and deriving inferences from 

structured, often low-dimensional data (Mitchell, 1997). With the advent of Deep Learning (DL), 

the field shifted toward extracting representations from high-dimensional data, enabling 

scalability with large and unstructured datasets such as images, speech, and sensor signals 

(LeCun et al. 2015). The next step in this evolution is Generative AI (GenAI), which leverages 

large-scale models trained on high-volume databases to create novel content such as text, 

code, or designs. GenAI thereby expands AI’s role from pattern recognition to content 

generation and contextual interaction, offering new possibilities for knowledge transfer and 

human-machine collaboration (Cao et al. 2023; Feuerriegel et al. 2024). Most recently, Agentic 

AI builds on these generative capabilities by orchestrating multi-step workflows through 

planning, reasoning, memory, and tool interoperability (Wang et al. 2024c). This marks a 

significant increase in autonomy, where AI systems are no longer limited to generating outputs 

but can act as agents within complex engineering and product development environments. 

Taken together, these stages show not only a rapid technological evolution but also an 

expansion of potential applications in the product development process: from supporting low-

dimensional data analysis (ML), through managing complex engineering data (DL), to assisting 

in creative design and knowledge-intensive tasks (GenAI), and ultimately enabling partially 

autonomous management of iterative, cross-disciplinary workflows (Agentic AI). 

Before the full potential of the presented AI subfields can be realized in product development 

processes, certain prerequisites must be established. While companies can already implement 

high-value AI use cases that deliver a fast Return on Investment (ROI), focusing solely on 

isolated use cases risks reinforcing the very challenges many organizations already face in 

relation to data, tools, and processes: fragmentation. To avoid this, it is essential not only to 

identify and implement high-value use cases but also to create the structural and organizational 

conditions that allow AI in engineering to scale sustainably. 

We argue that these approaches are not mutually exclusive but can complement one another. 

On the one hand, implementing high-value AI use cases within individual engineering 

disciplines can lay important groundwork for the Digital Thread. On the other hand, adopting a 

“Thread-First” perspective (Accenture Research Report 2021) ensures that strategic objectives 

and key capabilities are defined and continuously monitored, guiding the selection and 

execution of AI initiatives. Such a combined strategy leverages synergies: it enables 

organizations to capture rapid benefits through GenAI use cases while simultaneously ensuring 

the long-term scalability of these solutions, ultimately helping to overcome data silos and 

fragmented IT landscapes. 

To ensure a scalable application of AI in the product development process, several dimensions 

need to be considered and systematically consolidated within a unified framework. For this 

reason, the following Subsection introduces a framework consisting of five key dimensions, 

which should be considered in every engineering AI transformation. 
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Framework for Scalable AI in Engineering 

The current starting point for most engineering companies developing complex, mechatronic 

product is challenging and characterized by 

• inadequate data flows / connectivity across lifecycle stages, 

• persistent data silos,  

• proprietary and non-standardized PMT departments,  

• a lack of interoperability between engineering tools, methods, and disciplines,  

• redundant, ambiguous and incomplete data, 

• missing real-time access to consistent product information,  

• the involvement of many expensive tools. 

The root cause lies in historically grown engineering tool chains, workflows, and collaboration 

models. Efforts to optimize individual disciplines have led to a fragmented landscape of tools, 

data and processes, often lacking a holistic product-level perspective. This situation impedes 

the realization of end-to-end traceability, consistent data management, and efficient cross-

domain collaboration.  

Addressing these challenges requires deliberate efforts to establish a connected engineering 

landscape that builds upon existing solutions. Central questions arise: 

1. How can companies modify their brownfield environments to achieve maximum value 

with manageable efforts? 

2. How can engineering be prepared for the future, where AI will play a pivotal role? 

3. What steps should companies take to rapidly address high-value AI use cases while 

simultaneously building the foundations for scalable AI strategies in the product 

development process? 

To answer these questions, we propose a framework for the scalable application of AI in 

engineering (see Figure 3) that helps organizations to pay attention to key capabilities, which 

should be considered and monitored during the implementation of AI use cases and serve as 

the foundation for a Digital Thread & AI adoption.  

Our framework focuses on five key dimensions critical to establishing an AI-enabling Digital 

Thread: 

1. Data Quality: Increasing data quality consists of ensuring the use of a limited number 

of consistent data formats for engineering artifacts across the product lifecycle and 

eliminating redundant, ambiguous and incomplete data. We propose a decentralized 

data architecture based on the data mesh concept (Dehghani 2022), which bundles 

domain-specific data into data products and catalogs. Data is made available for the 

application of AI use cases. The overall goal of the Data Quality dimension is to provide 

accurate, reliable, and understandable data products from the engineering toolchain 

that are accessible to data consumers. The aim is not to guarantee data completeness, 

accuracy, and uniqueness across all data sets, but rather to ensure the necessary level 

of data quality for particularly important data sets and facilitate reliable AI applications. 

2. Interoperability: Data is generated, managed, and maintained within the engineering 

toolchain. To enable both accessibility and modification of this data by AI applications, 

bidirectional communication between the individual tools and the AI platform is 

essential. This communication is facilitated through an interoperability layer positioned 

between the engineering tools (and their data products) and the AI platform. The 
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interoperability layer ensures seamless data transfers, synchronization as well as agent-

based communication, thereby creating the foundation for efficient and scalable 

integration of AI into engineering processes. 

3. AI Platform: The AI Platform and its infrastructure ensure the technical realization of AI 

use cases. The technical infrastructure consists of polyglot data storage solutions, 

computing capacities and connections to cloud or on-premises systems. The AI 

applications are then implemented on the AI Platform using microservice architectures 

and containerized CI/CD pipelines, which are continuously updated and monitored. 

4. Context Management: Knowledge from the entire product development process 

should be made accessible and structured at central points. For this purpose, 

knowledge is aggregated on the AI platform within context modules, which are 

represented in the form of knowledge graphs (KGs) and vector databases. The objective 

of these context modules is to capture the relationships between the development 

artifacts contained in the domain-specific data products and enabling quick access to 

relevant information. Access to model-based systems engineering (MBSE) tools and 

(cross-domain) process models that represent product and process modeling at the 

metamodel level is also an important source of context for providing GenAI and Agentic 

AI applications with the information required for handling complex engineering tasks. 

5. Federated Governance: The Federated Governance Team is responsible for the overall 

management of the AI use case landscape. This includes the definition of standards and 

interfaces for data transfer, the strategy definition for use case selection and the 

specification and continuous monitoring of targets and KPIs. Specifying common, 

cross-domain processes and ensuring interoperability between domains is the central 

task of federated governance, without interfering too deeply in the domains' areas of 

responsibility. To ensure secure and compliant use of product data, solutions must 

provide dynamically managed usage rights while guaranteeing compliance with 

regulations, safeguarding data ownership, enabling secure third-party interfaces, and 

meeting cybersecurity requirements. 
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Figure 3: Proposed AI in Engineering Framework with five Key Dimensions 
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The following Subsections describe the five key dimensions in detail and provide insights into 

the components that constitute these key dimensions. In addition, experts from the respective 

domains share perspectives on industrial implementations and report on practical experiences. 

01 Data Quality 
Ensuring high data quality in engineering tool landscapes is a critical challenge for any 

enterprise. Engineering activities generate and manage a wide range of artifacts across multiple 

tools. As products become more complex with increasing E/E and software integration, data 

heterogeneity increases, and the number of different data formats expands, leading to an 

exponential rise in data management complexity. Each engineering domain typically works with 

its own data models, formats, and lifecycles. To effectively manage this complexity, a data mesh 

approach with a decentralized data architecture (Dehghani 2022) is recommended, which is 

well-suited for engineering environments (Hooshmand et al. 2022). In such a setup, domain 

teams act as data product owners, leveraging their deep understanding of domain-specific data 

and formats. Domain-specific data is bundled into consumable data products and provided to 

a variety of data consumers across the organization. 

 

Figure 4: Pillars of Data Quality in Engineering Tool Landscapes 

Figure 4 shows the four most important pillars for ensuring high data quality. The pillars are 
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prerequisite for making data machine-readable and thus preparing it for use by AI 

algorithms. For example, unstructured data in industrial companies contains a wealth of 

information that is extremely important for AI applications (Tinnes et al. 2024), AI 

algorithms can extract valuable information from it (Mahadevkar et al. 2024) and serve 

as data preprocessors (Zhang et al. 2023). Care must be taken to ensure that the outputs 

of the algorithms are structured and correspond to the specifications of the desired 

data formats (Liu et al. 2024b). Especially in engineering, there are many different, 

complex technical documents and files from which a variety of information can be 

extracted. Jamieson et al. (2024) provide a comprehensible overview of AI applications 

for the processing of technical engineering documents. Zhang et al. (2025b) summarize 

different use cases that derive textual descriptions and annotations from CAD models. 

A structured analysis conducted in 2022 within the AI Marketplace initiative assessed 

23 common data formats and data models from the product development process for 

their suitability in serving as AI model input and demonstrated that, at this point in time, 

many of them require transformation processes that result in data loss (AI Marketplace 

2022). 

 

Figure 5: Typical Data Formats, Models and Standards in the Engineering Domain based on prostep ivip 
(2025) 
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et al. (2024b) provide a comprehensive review of data quality dimensions and tools for 

AI applications. It is important to note that while accuracy, completeness, and 

unambiguity of data are desirable objectives, achieving them in absolute terms is either 

unattainable or only possible at unjustifiable effort. In the context of an AI engineering 

transformation, this raises the question of which data are particularly critical, which 

need to be monitored, and to what extent data quality must be improved to generate 

reliable AI outputs. 

 

3. Metadata Management: Among all data layers presented in Figure 3, metadata plays a 

critical role and is decisive for algorithms to understand the horizontal and vertical 

complexity of a mechatronic product (Bode et al. 2024). Metadata provides the 

semantic context needed for machines and humans alike to understand and process 

data. It forms the foundation for semantic interoperability, a prerequisite for data 

sharing and integration activities. Therefore, engineering artefacts should be 

consistently described by metadata, whereby GenAI can support the creation, 

standardization, and maintenance of metadata (Yang et al. 2025). Metadata is 

particularly important in the framework presented in Figure 3, as it is fundamental to 

two of the key dimensions presented: interoperability and context management. 

 

4. Synthetic Data Generation: When only incomplete datasets or those that do not cover 

the full solution space are available, enriching them with synthetic data is an effective 

way to improve the performance of AI algorithms. Synthesizing data can also serve as a 

valuable fallback, especially in domain-specific scenarios where little or no real-world 

data is accessible, such as early development phases, edge cases, or rare failure modes 

in engineering systems. In engineering domains, the generation of synthetic data is 

gaining increasing importance, as real-world data collection is often time-consuming, 

expensive, or limited by operational constraints. Techniques for synthetic data 

generation range from simple rule-based simulations to advanced generative models 

like Generative Adversarial Networks (GANs) or diffusion models. These synthetic 

datasets can be used to train, validate, and test AI models under a variety of conditions 

and have proven to enhance AI performance in different domains, such as requirement 

management (El-Hajjami & Salinesi 2025), MBSE (Muttillo et al. 2024) and scenario 

testing (Song et al. 2025). 

In summary, managing data quality in engineering tool landscapes is fundamental for the 

success of any AI use case and requires a shift towards decentralized data ownership, as in-

depth knowledge of domain-specific data is only available in the domain teams. Recognizing 

weaknesses in data management and tackling them with the pillars presented is an important 

first step towards the transformation into data-driven engineering. LLMs have recently proven 

that they are suitable for a range of tasks to increase data quality (e.g. Naeem et al. 2024) and 

often the first valuable AI use case is not to optimize (engineering) processes, but to improve 

data quality (Singh 2023).  
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02 Interoperability 
In the framework presented in Figure 3, we present multiple levels on which data is managed 

and made accessible. Data must be transferred between engineering toolchain, its data 

products and the AI platform and its context modules. The transfer should be as efficient and 

as close to real time as possible to ensure up-to-date representations. Interoperability refers to 

the exchange of data between these levels and thus pursues the goal that different product 

representations, artifacts and metadata are continuously synchronized and thus the same 

product data with different levels of detail is available at all levels. Access to the latest data is 

particularly important for AI in engineering, as relationships between domains, disciplines, and 

development teams evolve dynamically, and the performance of AI algorithms can only be 

guaranteed if accurate and up-to-date context is provided (Mei et al. 2025). Figure 6 shows the 

four most important pillars for enabling interoperability, which are further discussed below. 

 

Industry Insights into Data Quality Management

Marcel Altendeitering

Head of Department

Fraunhofer ISST

Tobias Guggenberger

Group Lead

Fraunhofer ISST

The increasing number of data sources, volumes, and formats makes data quality
management a complex topic. The processes for identifying, analyzing, and resolving
data quality issues are often manual and cumbersome. Moreover, the necessary
metadata in the form of data profiles and data quality rules is often not available,
which further complicates data quality management. As a result, data quality
problems often remain undetected and lead to process disruptions.

To address this problem, we implemented AI and ML technologies at multiple points
of the process. At the beginning of the process, we utilized ML algorithms for
automated data profiling and generating data quality rules for multiple attributes to
identify dependencies. Based on these solutions, we used established GenAI models
to generate metadata and transform the identified data quality rules into SQL code.

An important insight of the use case was that AI and ML technologies are very well-
suited for identifying complex data quality rules and accuracy problems involving
multiple attributes. These are often missed by humans. Additionally, the automated
generation of SQL code helps reduce the manual effort required for creating data
quality rules.
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Figure 6: Pillars of Interoperability in Engineering AI Landscapes 
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dimensionalities throughout the product development process (see subsection Data 

Quality). This is why data connectors must be tailored to accommodate these variations 

and preserve context. Engineering data combines 3D models, simulation results, test 

signals, and rich metadata. Some arrive as very large files, others as fast, continuous 

streams. To keep the levels of the framework synchronized, the interoperability layer 

needs connectors that can move these different data types efficiently and keep their 

context linked. Research on Digital Thread shows that lifecycle analytics only work when 

heterogeneous data stays connected across systems, not just copied in pieces (Abdel-

Aty et al. 2024). At the same time, studies on big-data transfer in cloud environments 

show that the choice of the transfer approach strongly affects throughput, latency, cost, 

and security (Majigi et al. 2025), which is why connectors should support both bulk 

movement and real-time streaming while preserving metadata for traceability. 

Especially the transfer of high-dimensional data such as CAD and simulation models is 

challenging due to large file sizes and heterogeneous formats. Recent studies show that 

converting these assets into HDF/HDF5 can streamline movement of memory-intensive 

CAD models (Khan & Rezwana 2021) and simulation datasets (Kunc & Bröcker 2024; 

Bröcker et al. 2024), which has the potential to improve interoperability between 

engineering tools and AI platforms in the future.  

 

2. Data Lineage: Data lineage, closely linked to the concept of data provenance, refers to 

the lifecycle and movement of data, enabling the capability to identify the data source 

(input) and destination (output), including all transformations, processes and 

intermediate steps, at any point in time and in any system. Especially when data is 

transferred multiple times between the levels of the framework, it is important for 

regulatory and validation purposes to comprehend the origin of the data to be able to 

continuously assess data quality and reliability. Corresponding information can be 
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stored in metadata, which is why data lineage is closely linked to the quality assurance 

of data (see key dimension Data Quality). In cases where the performance of trained AI 

models is unexpectedly poor, data lineage approaches help identify errors in the 

datasets and uncover their root causes (Pahune et al. 2025). Data and AI form a 

sociotechnical construct in which effective collaboration between domain and AI 

experts working on different levels in the framework depends on a shared 

understanding of the data: an understanding made possible through data lineage, 

which serves as a prerequisite for transparent communication about data origins, 

context, and transformations (Jarrahi et al. 2023).  

 

3. Smart Synchronization: To be able to access the most up-to-date data at all levels, the 

data must be synchronized without creating copies. Access to current data in real time 

is a key feature for the engineering of the future, as it allows real-time optimization 

between levels and even the integration of data outside of engineering (manufacturing, 

maintenance & service), as emphasized by Ghosh et al. (2025). Data federation enables 

such access by allowing users to query multiple, heterogeneous data sources through 

a unified interface, without duplicating or moving the data. This minimises the amount 

of integration work required, helps maintain up-to-date data, and enables real-time 

analysis. 1  (Gu et al. 2024) Complementing this, modern data stream processing 

systems, as highlighted by Fragkoulis et al. (2024), provide the technical backbone for 

real-time synchronization by enabling stateful, low-latency, and fault-tolerant 

integration of live data flows across distributed engineering tools and systems. It is 

important to recognize that valuable data does not just come from engineering tools, 

but also includes information from production systems, sensors, and IoT devices, 

offering insights from the manufacturing and service phases and enabling the vision of 

closed-loop engineering (Durão et al. 2024). Regarding synchronization, users should 

ask themselves which data is exchanged in which format and at what frequency 

between the levels to minimize costs and latencies as much as possible. 

 

4. Interoperability Standards: Especially dealing with engineering data, a lot of 

interoperability challenges can be faced, such as different standards and specifications, 

lack of semantics, lack of communication mechanisms and protocols, high complexity 

and costs, lack of trust regarding data sharing and security/privacy concerns and 

scalability (Liepert et al. 2024). Interoperability and integration must not only be 

considered in terms of streaming data from engineering tools into the AI platform, but 

also in the reverse direction: insights gained from data-driven analysis at higher system 

levels must be fed back into the engineering tools and result in (human-supervised) 

modifications of engineering artifacts. This bidirectional flow is essential to enable data-

driven engineering. Many standardized technologies for data exchange are available 

nowadays. Most widely used are APIs, which are implemented in almost every modern 

tool or platform. Standardized data exchange between tools and platforms can also be 

enabled through ETL data pipelines (Foidl et al. 2024) and message queues (Maharjan 

et al. 2023). Additional emerging technology standards that significantly improve tool 

accessibility and agentic communication are Anthropic’s Model Context Protocol (MCP) 

(Hou et al. 2025b) and Google’s Agent-to-Agent (A2A) protocol (Ray 2025). MCP ensures 

 
1  Gu et al. (2024) provide a comprehensive survey of data federation systems, analyzing 51 
solutions using a structured evaluation framework. Their work identifies key capabilities (e.g., 
query languages, security features, supported data types) and highlights data federation's value 
in enabling integration of distributed data without compromising freshness or consistency. 
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standardized communication between agents and (engineering) tools, while A2A 

enables standardized communication between multiple agents in multi-agent systems. 

Figure 7 illustrates a MCP workflow for an engineering use case. The engineer interacts 

with an MCP Host, which represents an application, and submits a prompt to the MCP 

Client, which the MCP Host manages. Based on the prompt, the MCP Client establishes 

a connection to an MCP Server that has access to one or more engineering tools. 

Through API invocation and the use of pre-defined prompt templates, the server can 

either retrieve data from the tools or execute tasks within them. During this process, the 

client and server communicate bidirectionally until the task is completed. The engineer 

then receives a response from the client regarding the task's completion. 

 

Figure 7: MCP Workflow based on Hou et al. (2025b) adapted to an Engineering Application 

In the example provided, the engineer ideally receives a list of all requirements related 

to the housing, which are managed within the requirement management tool accessible 

by the MCP Server. In the future, MCP implementations will mean that routine tasks such 

as data calls or simple modifications to engineering artifacts will no longer have to be 

performed within the designated tools, but can be carried out using simple prompts on 

an AI platform. 

In summary, interoperability is essential to ensuring a consistent, real-time representation of 

engineering data across different abstraction levels in the enterprise IT landscape. It enables 

synchronized product views from detailed engineering artifacts to high-level knowledge graphs 

and AI-ready datasets. Interoperability requires multimodal data processing capabilities, 

domain-level ownership, and clear traceability to ensure transparency. Real-time data 

synchronization and federated access help keep information up to date without duplication. 

Standards and integration technologies like APIs and MCP or A2A enable smooth data flow 

between systems, turning AI insights into engineering actions. This lays the groundwork for 

data-driven engineering and faster, data-driven decisions. 
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03 AI Platform 
In addition to decentralized data architecture, engineering enterprises require a centralized AI 

platform where AI use cases can be developed providing required storage and computing 

capacities. Modern AI algorithms, particularly LLMs and agent-based systems, depend on 

powerful infrastructures consisting of computing resources, storage, and containerized 

development environments. Selecting the right vendors, embedding the AI platform into the 

overarching enterprise architecture (Ettinger 2025), and designing the architecture for large 

enterprises is a highly complex process (Ismail et al. 2025, Eken et al. 2024), but crucial for AI 

adoption in engineering. 

 

Figure 8: High-Level AI Platform Architecture 

Figure 8 shows a high-level architecture of a central AI platform with the most important layers. 

With the ingestion of data (see key capability interoperability), data is fed into the platform and 
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then processed in the curation layer using preparation, extraction and transformation 

techniques. The processed data is stored in appropriate formats across suitable databases 

(polyglot storage) and is readily available for direct input into the models. The modelling layer 

includes containerized pipelines for training, testing, and deploying the various AI models. In 

the monitoring layer, the performance of the AI models is continuously assessed, and 

appropriate actions are taken in case of performance degradation. The reporting & service layer 

serves as the interface to the user, presenting the results of the model applications through 

visualizations such as dashboards. 

Poor AI platform architecture decisions can have severe consequences and jeopardize the 

success of the entire engineering AI adoption. Furthermore, cybersecurity concerns must be 

addressed, ensuring that company data and the associated intellectual property are 

continuously protected (Admass et al. 2024). This is especially critical in highly regulated 

industries or when handling data that directly has impacts on the company’s competitiveness. 

In such cases, the question often arises whether sensitive data should be processed in cloud 

environments or whether on-premises solutions are the better choice (see also key dimension 

federated governance). Based on four pillars (see Figure 9), we outline the key capabilities that 

should be considered in designing the AI platform and the potential implications of various 

design decisions. 

 

Figure 9: Pillars of AI Platforms in Engineering AI Landscapes 

1. Cloud vs. On-Premises: For engineering enterprises aiming to leverage AI at scale, the 

choice between on-premises and cloud-based platforms is more than a technical 

decision. It is a strategic consideration with long-term implications. AI workloads, 

particularly in product development contexts, are characterized by high data volume, 

velocity, and heterogeneity. As Theodorakopoulos et al. (2024) highlight, many on-

premises infrastructures struggle to scale effectively under these conditions. In 

contrast, cloud environments offer dynamic scalability, enabling enterprises to process 

and analyze large, diverse datasets without investing in hardware expansion. When 
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assessing the trade-offs between cloud and on-premises deployments, enterprises 

should consider the following dimensions: 

• Security & Compliance: On-premises solutions offer more direct control, while 

cloud providers offer certified compliance solutions but require trust in external 

parties. 

• Cost: On-premises solutions require significant upfront investment and 

maintenance. Cloud follows a pay-as-you-go model (IaaS, PaaS), which scales with 

usage but may become costly over time. 

• Performance: On-premises solutions can reduce latency for real-time systems. 

Cloud offers powerful hardware on demand but may suffer from network-induced 

delays. 

• Scalability & Availability: Cloud platforms provide elastic scalability and built-in 

redundancy. On-premises environments are slower to scale and require manual fault 

tolerance measures. 

A common concern among enterprises is the risk of vendor lock-in when committing to 

a single cloud provider. To mitigate this, enterprises can follow a multi-cloud approach 

that distributes services across different platforms, increasing resilience and 

operational flexibility (Dai et al. 2025). Moreover, the emergence of hybrid architectures, 

combining on-premises servers, edge computing, and cloud platforms, provides 

engineering companies with new levels of freedom to align technical needs with 

strategic priorities.2 One of the most promising paradigms in this context is Federated 

Learning (FL), which allows AI models to be trained across distributed data sources 

without centralizing the underlying data. Yao et al. (2022) and Zhan et al. (2025) describe 

FL frameworks in which sensitive data remains on-premises or at the edge, while only 

encrypted model parameters are exchanged with the cloud. This method respects data 

sovereignty, minimizes bandwidth usage, and enables the training of models across 

heterogeneous environments. It is particularly effective in addressing latency, 

computational constraints, and system reliability. 

In practice, the decision between cloud, on-premises or hybrid infrastructures should 

reflect the nature of the AI workload and the strategic priorities of the organization. On-

premises implementations are best suited for environments where AI is tightly coupled 

with proprietary hardware and low-latency, real-time inference is essential, or where 

data sensitivity (e.g. in highly regulated industries) prohibits external transmission. 

Conversely, cloud-based solutions are recommendable for enterprises that need to 

support variable workloads and rapidly train and deploy new models. 

2. AIOps: To successfully adopt AI at scale, engineering companies must go beyond 

isolated AI use cases and build robust infrastructures and architectures (see Figure 8) 

for development, deployment, and monitoring. AIOps, which represents the fusion of AI 

and DevOps, provides exactly that foundation. AIOps enables scalable and secure ML 

workflows, offering automation, standardization, and traceability across the entire 

lifecycle. While not yet widely implemented in industry (Faubel & Schmid 2024), AIOps 

will be essential for engineering companies seeking to operationalize AI effectively. 

Rooted in CI/CD principles, AIOps emphasizes microservices, containerization, and 

orchestration to ensure modularity, scalability, and reliability (Kreuzberger et al. 2023). 

It also plays a crucial role in protecting against security risks such as data leakage, 

 
2 See Loconte et al. (2024) for a comprehensive framework on hybrid industrial AI architectures 
involving IoT, edge, and cloud layers. 
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poisoning attacks, and systemic vulnerabilities (Dai et al. 2025). In practice, however, 

AIOps adoption varies significantly. Different levels of technical expertise, even within 

the same organization, influence how workflows are designed and operated (Rzig et al. 

2024). Success depends not just on tools, but also on organizational alignment, training, 

and culture (Mehmood et al. 2024; Faubel & Schmid 2024).  

With the rise of GenAI and LLMs, LLMOps has emerged as a specialized extension. 

Compared to standard ML or DL deployment, LLMOps must address greater compute 

and storage requirements, while ensuring scalability and responsiveness (Pahune & 

Akhtar 2025). Although still at an early stage of maturity (Borovits et al. 2025), 

companies are advised to invest early in LLMOps expertise to stay ahead of the curve, 

since AIOps and increasingly LLMOps are becoming strategic capabilities for 

engineering organizations aiming to industrialize AI development and deployment. 

3. Model Selection: The selection of suitable AI models for engineering applications is 

both a technical and strategic decision. Engineering tasks are inherently diverse, from 

text- or code-based artifact generation (requirements, test cases & scripts, release 

notes) to 3D data processing and generation for CAD or simulation models. An overview 

of (selected) commonly used AI models in engineering contexts is presented in Table 1. 

In the last years, transformer-based LLMs have emerged as powerful tools capable of 

interpreting, generating, and reasoning over multimodal engineering data, including 

text, code, images, and time series. These models increasingly act not as isolated 

systems, but as components within Agentic AI ecosystems that collaborate to solve 

complex engineering tasks. 

Table 1: Selected AI Models Typically Applied in Engineering Use Cases 

Model Description Engineering Use Cases 

Large/Small 

Language Model 

(LLM/SLM) 

Transformer-based models capable 

of understanding and generating 

natural language 

Requirement generation 

Test case generation 

Release note generation 

Text-2-CAD 

Convolutional 

Neural Network 

(CNN) 

Deep learning model specialized in 

processing high-dimensional data 

such as images or time series 

Defect detection in XiL testing 

CAD/simulation model 

classification 

Graph Neural 

Network (GNN) 

Deep learning algorithm designed to 

operate on graph-structured data 

BOM analysis 

Dependency and traceability 

analysis of RFLPT3 artifacts 

Physics-Informed 

Neural Network 

(PINN) 

Neural networks that incorporate 

physical laws (e.g., partial differential 

equations) as constraints 

Surrogate modelling for 

FEM/CFD simulations 

Conventional ML 

algorithms 

(classification) 

Different conventional ML algorithms 

such as random forest or support 

vector machines for classification 

tasks 

Artifact property classification  

Duplicate or inconsistency 

detection 

Conventional ML 

algorithms 

(regression) 

Different conventional ML algorithms 

such as multilayer perceptron, 

decision tree or support vector 

regression for regression tasks 

Parameter prediction based on 

CAD/simulation data 

Effort and performance 

estimations 

 

 
3 Requirements, Functional, Logical, Physical, Test. 
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As the codification of engineering knowledge accelerates, the role of LLMs and multi-

agent systems is expected to grow. The future lies in orchestrating collaborative 

reasoning chains between (cloud-based) LLMs and on-premises-deployed Small 

Language Models (SLMs). In this paradigm, LLMs handle abstract, high-level reasoning 

tasks while SLMs execute context-specific operations at the device level. This hybrid 

architecture not only reduces latency and cost but also aligns with the distributed 

nature of industrial systems (Li et al. 2025d). Model size plays a crucial role in this 

division of labor. LLMs, with billions of parameters, offer generality and adaptability 

across domains. SLMs, by contrast, typically range from a few million to several hundred 

million parameters and are optimized for edge deployment on on-premises hardware, 

mobile devices or microcontrollers. As shown by Subramanian et al. (2025), while SLMs 

may lack the broad generalization capabilities of LLMs, they often outperform them in 

narrow, domain-specific tasks due to their efficiency, lower computational demands, 

and reduced inference costs. This suggests that smaller models are not a compromise, 

but a strategic advantage when deployed appropriately. 

Beyond technical trade-offs, organizational considerations are increasingly shaping 

model selection. Issues of compliance, control over proprietary data, and risk 

management are prompting many companies to turn to open-source models that can 

be deployed on-premises and fine-tuned to meet domain-specific needs. One 

prominent example is DeepSeek, an open-source LLM that has demonstrated 

competitive performance with leading proprietary models like OpenAI’s GPT or Google’s 

Gemini, particularly in specialized tasks. DeepSeek not only allows fine-grained 

customization but also supports efficient domain adaptation (Guo et al. 2024; Rahman 

et al. 2025). Injecting domain-specific knowledge into AI systems remains a top priority 

for industrial users (Lee & Hu 2023). This challenge raises a fundamental decision point:  

 

Should companies rely on out-of-the-box general-purpose foundation models, apply 

transfer learning for task-specific fine-tuning, build Retrieval-Augmented Generation 

(RAG) pipelines to supply contextual data dynamically, or train models from scratch? 

 

In most industrial scenarios, end-to-end training of LLMs is not a viable option due to 

data scarcity and high resource demands. As such, hybrid strategies combining RAG, 

fine-tuning, and specialized SLMs deployed on-premises represent the most promising 

way forward. In principle, each use case should be analyzed in detail to determine which 

model is best suited to the specific problem and in many cases, the use of LLMs can be 

avoided. Some engineering applications can be effectively implemented using other ML 

or DL algorithms that require significantly less computing power and lower data 

volumes. 

4. Data Storage: Modern engineering departments produce large amounts of 

heterogeneous data, encompassing structured formats such as simulation outputs and 

measurement data, as well as unstructured sources like design documentation and 

research notes. Efficient polyglot storage architecture is essential to unlock the 

potential of such data for analytics, monitoring, and AI-driven decision-making. 

Traditional architectures like data warehouses and data lakes have served distinct 

purposes. Data Warehouses are designed to integrate structured, cleaned, and pre-

processed data using ETL pipelines, enabling consistent reporting and historical 

analysis. In contrast, Data Lakes ingest both structured and unstructured data in its raw 

form via ELT pipelines, deferring transformation to query time and thus offering more 

flexibility for diverse analytics tasks (Azzabi et al. 2024). However, enterprises are 

increasingly facing a trade-off between the structured reliability of warehouses and the 
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flexible access patterns of data lakes (Dai et al. 2025). This has led to the emergence of 

the lakehouse paradigm, which combines the advantages of both models. As described 

by Armbrust et al. (2021), lakehouses retain low-cost, open file formats and avoid data 

duplication and staleness, while supporting SQL-based analytics and AI workloads 

within a unified platform. Lakehouses aim to simplify complex architectures by 

consolidating batch and streaming data pipelines, minimizing technology 

heterogeneity, and eliminating redundant data movement between systems (Schneider 

et al. 2024). They must meet rigorous requirements: consistent storage formats, support 

for CRUD4 operations across all data types, relational tabular structures, a declarative 

query language, consistency guarantees, and task-isolated processing. Moreover, direct 

data access and unified batch-stream processing capabilities are crucial for enabling 

advanced AI workflows. 

 

In today’s increasingly complex engineering tool landscapes and AI platforms, the 

concept of polyglot storage architecture is becoming a necessity rather than a choice. 

As outlined by Kasper et al. (2024), storing all product lifecycle data in a single, 

monolithic database is neither scalable nor efficient. Instead, polyglot persistence 

enables a multidimensional representation of product data across various views 

(RFLPT), while optimizing performance, scalability, and data accessibility. This is in line 

with the decentralized data architecture based on the data mesh concept 

(Goedegebuure et al. 2024). Corresponding databases at domain and tool level thus 

represent the authoritative single source of truth (Bone et al. 2018, Kwon et al. 2020) 

and allow the higher levels (AI platform, context modules) to access this data in real 

time. 

In summary, a centralized AI platform is essential for engineering enterprises to efficiently 

develop, deploy, and monitor AI use cases by providing scalable computing, storage, and 

containerized environments integrated into the overall enterprise architecture. Its success 

depends on robust design decisions across four pillars ensuring scalability, security, and 

effective AI adoption in complex engineering landscapes. 

 

 
4 CRUD: Create, read, update and delete. 
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real-time inference workloads and improving end-to-end observability across
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04 Context Management 
To fully exploit the potential of AI in product development, it is necessary to provide models 

with holistic access to diverse product information, such as product structures, development 

artifacts, documentation, development processes, legal requirements and standards and 

system models. Providing context and causal cause-and-effect relationships between the 

engineering domains involved in the development process is a key challenge. This challenge 

can be solved by creating and continuously maintaining context modules, such as graph 

databases (Kwon et al. 2020, Liang et al. 2024b), vector databases or meta-models. Both in 

engineering and in subsequent phases of the product life cycle such as manufacturing (Zhou 

et al. 2024a, Yahya et al. 2024) and service/maintenance (Xie et al. 2024), considerable research 

efforts have been undertaken in recent years to demonstrate the suitability of knowledge 

graphs for knowledge linking at an elevated meta-level. Product-related information that was 

originally available in unstructured formats such as documentation, emails, or regulations can 

now be stored in vector databases and made accessible to LLMs for RAG applications (Xu et al. 

2025c). For end-to-end application of AI in the product development process, it is important to 

provide system-wide context and formalize the product development process in such a way 

that cross-domain processes, dependencies, and interactions become machine-readable. The 

definition and stringent application of semantics and ontologies, as well as the transformation 

of a document-centered development process toward MBSE (Zhang et al. 2025e), formalize 

product development and are prerequisites for the scalable application of AI across domain 

boundaries.  

 

Figure 10: Pillars of Context Management in Engineering AI Landscapes 

In the framework shown in Figure 3, context management serves as the brain of AI applications, 

as it links product knowledge and maps the interdependencies and impact chains of artifacts 

and other product-related information. Context management represents a control layer at 

metadata level and aims to provide context and cause-effect relationships between artifacts 

and product information, drastically improving the knowledge extraction, reasoning and 

orchestration capabilities of LLMs. It is therefore recommended that the support of vector and 
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graph databases is considered when selecting the AI platform and corresponding storage 

platforms (Harby & Zulkernine 2025). Figure 10 shows the pillars of context management in 

engineering AI landscapes, which are explained in more detail below. 

1. Knowledge Graphs: Knowledge graphs consist of nodes (entities) and edges (relations) 

that structure knowledge in the form of subject-predicate-object triples (Liang et al. 

2024a). They integrate information from various sources, semantically link related 

concepts, and enable context-aware queries and inferences. Ontologies are often used 

to formally define the meaning of nodes and relations, allowing machines to interpret 

the data (Zou 2020). While until a few years ago a lot of manual work was required by 

experts to create domain-specific KGs (Hur et al. 2021), generative approaches and 

especially LLMs, are now able to process big data and automatically create (multimodal) 

KGs based on heterogeneous data sources (Ibrahim et al. 2024). The construction of 

KGs in engineering is particularly challenging, as domain knowledge such as 

engineering principles or industry-specific best practices and regulations must be 

embedded in the KG and the underlying data is stored in a wide variety of source 

systems (Liang et al. 2024b, Liang et al. 2025). Furthermore, various measures must be 

considered in the KG construction phase, such as efficiency (computing time required), 

costs (number of tokens used) and KG quality (e.g. proportion of isolated entities) (Xiao 

et al. 2025). 

Figure 11 shows an exemplary LLM-augmented KG construction and retrieval pipeline as 

well as a simplified KG specialized for engineering. KG construction is based on 

heterogeneous data sources that draw on artifacts from the engineering toolchain, but 

also use additional information from documentation, regulations, internal wikis and 

many other data sources. Well-maintained metadata that documents the validity of the 

extracted information and artifacts for specific products, configurations and variants is 

fundamental to extract valid relations for the KG construction. In the first step of the KG 

construction pipeline, data is transformed, and relevant text sections are extracted. The 

extracted text sections are then further processed by an LLM in the LLM-augmented KG 

preparation step, which has the task of recognizing and extracting relevant entities and 

relations between entities and merging them into valid triples. This creates the 

simplified product KG shown in Figure 11, which depicts the relationships between 

engineering artifacts and further product information. 
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Figure 11: KG Construction and Retrieval Workflow based on Hoang et al. (2025) adapted to an 
Engineering Application 

The constructed KG is then stored in a database. Relational databases are suitable for 

small graphs (e.g. Hoang et al. 2025), however when memory requirements increase, 

the switch to graph databases is unavoidable for performance reasons (Ibrahim et al. 

2024). After the graph has been constructed, it is transformed into a vector embedding, 

making it accessible for LLMs and similarity checks with prompts. If an engineer sends 

a prompt to the LLM, the content of the KG is compared with the prompt, and the 

relevance of triplets is evaluated based on their similarity to the prompt. Triplets with 

high relevance are added to the prompt to provide the LLM with product and domain-

specific context. Such an approach is called GraphRAG (Han et al. 2024b, Zhu et al. 

2025, Peng et al. 2024) and is particularly effective for highly specific tasks where the 

LLMs need to draw on (domain-specific engineering) knowledge that was not provided 

to them during the training process (Zhang et al. 2025c). Different measures must also 

be considered for the retrieval pipeline. The most important measures are the time to 

create the vector embedding (indexing time) and the average retrieval time (Xiao et al. 

2025).  

Another promising approach is the use of DL algorithms to evaluate the relevance of 

triplets or combinations of triplets. GNN-RAG, i.e. the use of GNNs to identify highly 

relevant subgraphs and triplet combinations, enables LLMs to provide advanced 

reasoning capabilities (Mavromatis & Karypis 2024). The integration of agents that 

interact with KGs multiple times and optimize their actions based on reinforcement 

learning to retrieve the most suitable information from the KG (Luo et al. 2025) is a 
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further interesting research field. In the future, this can be a key for complex Product 

KGs that need to map different products, configurations, variants and the interaction of 

mechanics, hardware and software to identify complex relationships between artifacts 

and other product information, allowing conclusions to be drawn. 

In addition to automated construction and retrieval, dynamic adaptations of KGs are an 

important feature to qualify for scalable use in engineering. This includes managing the 

KG and its vector embeddings in AIOps pipelines, which are dynamically adjusted as 

new engineering artifacts are created, and new product-related information is added 

(Liang et al. 2025). In particular, the introduction of Temporal KGs, which give 

information recorded in the KG a temporal reference and thus ensure the temporal 

validity of information (Choi & Jung 2025, Wang et al. 2024b), can be seen as a way of 

mapping change and configuration management processes in the future. The need for 

dynamic KG updates has already been recognized in the manufacturing sector (Wan et 

al. 2024) and prototypically implemented using the example of physically decoupled, 

collaborative robots (Bai et al. 2024). Another research focus is the continuous 

evaluation of the quality of KGs as well as the quantification of incompleteness and 

uncertainty. Existing (engineering) data is imprecise, incomplete and ambiguous, which 

is why these properties are also transferred to KGs. In addition, retrievals from KGs are 

also subject to uncertainty, which is why Mishra et al. (2024) call for the integration of 

uncertainty modules in KGs that highlight incomplete data areas, quantify knowledge 

gaps and then dynamically adapt the graph. The continuous assessment of 

uncertainties in retrievals from KG is also currently the subject of research (Ni et al. 

2025a) and should be considered in future implementations in the monitoring layer of 

the AIOps pipeline. 

 

2. Retrieval-Augmented Generation: To support RAG use cases, lakehouses are evolving 

to incorporate vector databases, which require high responsiveness and contextual 

Industry Insights into Fixed Entity Architecture 
for GraphRAG solutions 
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Architect

Accenture

Bernhard Wieland

GenAI Expert

Accenture

In developing performance optimized knowledge-based AI solutions, the initial
approach utilized the LLMs based GraphRAG technique, specifically Microsoft
GraphRAG. This approach demanded considerable effort to construct a graph,
particularly with extensive data sets. It heavily relied on LLMs, lacked integration
with domain ontology, and required substantial deduplication and post-
processing. The main challenge was to devise a more cost-efficient, simpler, and
production-friendly method that also improved domain comprehension.

The proposed method, named Fixed Entity Architecture (FEA), merges standard
RAG with domain ontology. FEA employs a layered graph structure, where data
layers are logically separated. While GraphRAG excels as a standard RAG
approach by its nature, FEA simplifies the construction and utilization of graphs for
specific GenAI applications. An extension of FEA, called NLP-driven GraphRAG,
supports building layered graphs even in the absence of a predefined ontology. This
involves text chunking similar to standard RAG, but with entities extracted and
linked through triplets, thereby enhancing the traditional RAG model by
incorporating entity relationships and logical connections.

The adoption of FEA resulted in a more robust and easier-to-develop graphs and
query systems, improved domain understanding, and improved RAG performance
through entity linkage and business domain logic. Feedback from implemented
solutions showed notable gains in both efficiency and quality. Key takeaways
highlighted the value of combining domain ontology with standard RAG methods
and the effectiveness of NLP-driven GraphRAG in advancing the RAG framework.
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integrity. RAG's strength lies in making data accessible to AI systems that, just a few 

years ago, were largely not processable. Similar to the construction of KGs, unstructured 

data such as text is transformed into embeddings for RAG applications, which are then 

stored in vector databases. Using similarity searches between the prompt and the 

contents of the vector database, particular relevant information can then be extracted 

and incorporated into the prompt, providing LLMs and agents with context-rich 

information. This significantly increases the quality of LLM responses and prevents 

hallucinations (Zhao et al. 2024). Design decisions such as chunk size and prompt 

templating significantly affect retrieval quality (Li et al. 2025b), while system integration 

and failure point identification (Barnett et al. 2024) remain critical for operational 

reliability. Embedding RAG workflows in AIOps pipelines and connecting them to 

internal and external data sources ensures that lakehouses serve not only as 

repositories, but also as enablers of intelligent, context-aware applications. 

RAG applications are now already common practice in the development of industrial AI 

use cases and scientific publications related to engineering. Numerous engineering AI 

publications have already demonstrated that providing domain-specific context via RAG 

and GraphRAG applications leads to more performant LLM applications. Examples span 

all engineering domains, such as requirements management (Masoudifard et al. 2024, 

Hey et al. 2025), architecture design (Hanke et al. 2025), CAD design (Xiong et al. 2025), 

software engineering (Strittmatter 2025), simulations (Pandey et al. 2025, Feng et al. 

2025), test case generation (Wang et al. 2025a), product documentation (Tao et al. 2024, 

Pu et al. 2024), and compliance assurance (Sovrano et al. 2025). 

3. Model-based Systems Engineering: MBSE represents the paradigm shift from 

document-centric engineering toward formalized, model-based approaches by 

introducing structured and standardized system models that enhance consistency, 

communication, and collaboration across domains and life cycle phases. Unlike 

traditional documentation, MBSE provides a unified modeling environment in which 

requirements, logical and physical architectures, simulation behaviors, and 

optimization objectives are coherently represented and continuously refined across 

domain boundaries (Zhang et al. 2025e). A major milestone in this evolution is the 

emergence of SysML v2, which introduces a new metamodel and textual notation 

designed for improved semantic expressiveness and interoperability across 

engineering tools (Vaicenavičius et al. 2025). SysML v2’s standardized API enables 

seamless data exchange and interaction between domain-specific tools and the system 

model itself. This standardization allows external applications to query, update, or 

extend the SysML metamodel, creating the foundation for machine-readability and AI 

compatibility. 

Building upon this foundation, MBSE establishes a central, system-wide metamodel that 

links metadata to domain-specific specifications. This integration allows for continuous 

verification and validation (Cibrian et al. 2025), as well as automated compatibility 

checks throughout the engineering lifecycle. Such model-centric architecture paves the 

way for AI and agentic AI systems to gain a holistic understanding of the overall system. 

These AI agents can interpret system structures, processes, and boundary conditions, 

and autonomously delegate well-defined development tasks to subordinate agents 

operating within domain-specific tools or using domain-specific languages (see also 

Section Outlook). MBSE therefore provides a system-wide context that will enable AI 

applications to understand and explore the overall system in greater depth before 

development tasks can be orchestrated at subordinate system levels. 
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The integration of AI into MBSE has emerged as a research focus in recent years (Poulsen 

et al. 2025). Zhang et al. (2025f) outline a research roadmap that illustrates how GenAI 

can support model development, model management, and model comprehension. Early 

studies demonstrate that LLMs are already capable of generating SysML v2 models 

directly from textual descriptions, thereby automating parts of the system modeling 

process (Longshore et al. 2024; Johns et al. 2024). These developments highlight the 

potential of combining formalized system modeling with AI-driven reasoning to 

accelerate system design, ensure traceability, and establish the digital foundation for 

intelligent, adaptive engineering ecosystems. 

4. Linked and Traceable Product Data: A significant portion of time is spent by engineers 

searching for product information relevant to their tasks (Chandrasegaran et al. 2013), 

which is why the demand for linked and traceable product data is higher than ever. 

Although modern PLM software offers sophisticated solutions for PDM (Eigner 2021), the 

solutions reach their limits as soon as the number of variants and configurations in the 

product portfolio becomes unmanageable (Failla et al. 2025) and information that is not 

managed in the PLM system needs to be embedded. For this reason, linking product 

data and creating traceability across the entire product development process or even 

product life cycle in the sense of a digital thread is of fundamental importance and offers 

immense efficiency gains. This requires ontologies and semantics that describe the 

interaction of product data in a standardized way (Failla et al. 2025) and form the basis 

for the construction of KGs (Ryś et al. 2024). 

KGs are already being used in engineering for this purpose, as evidenced by several 

publications. While some authors propose KGs for domain-specific linking and 

traceability tasks, e.g. the similarity assessment of CAD models within large CAD 

repositories (Bharadwaj & Starly 2022), functional classification of components (Ferrero 

et al. 2022), knowledge retrieval from existing design data for product ideation in early 

design phases (Cong et al. 2025), conversion of standards into machine-readable 

formats (Luttmer et al. 2021) or model management (Ryś et al. 2024) and model 

versioning (Wu et al. 2025) in systems engineering, other authors propose cross-domain 

applications. Hedberg et al. (2020) propose a lifecycle handler system that assigns an 

ID to each artifact across domains and links them together via a KG. The importance of 

informative metadata for each artifact is emphasized to describe the content of the 

artifacts in detail and identify links to other artifacts. Kwon et al. (2020) show how they 

link design (STEP format) and inspection data (QIF format) via a KG and thus establish 

traceability between product design and quality assurance. Kasper et al. (2024) propose 

a KG-supported concept for linking data from all phases of the product life cycle, which 

can accelerate cross-domain change and quality management processes in the future 

(Kommineni et al. 2024). We assume that scalable solutions will be developed in the 

coming years that address cross-domain data interconnection and will be based on the 

approaches described (KG, RAG, MBSE). 

The need to link product data across the entire product life cycle has been known for years. 

Nevertheless, scalable solutions that link data across domains and tools have not been 

available. With the emergence of LLM-augmented KGs and associated retrieval and reasoning 

capabilities, this is likely to change in the coming years (Liang et al. 2025). The prerequisites for 

exploiting this potential are the creation of clear ontologies, (automated) creation and 

maintenance of metadata and the development of expertise in KG/RAG construction, retrieval, 

maintenance and uncertainty management. In this way, cross-domain development processes 

in particular, such as change, configuration and release management, can be massively 

accelerated and automated in the future. Emerging fields of research such as agentic context 
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engineering, i.e., the integration of agents to retrieve the optimal context from heterogeneous 

data sources (Zhang et al. 2025i), may further increase the performance of AI applications in 

the future and show great potential, especially for domain-specific tasks. 

05 Federated Governance 
AI is entering product development at speed, drafting requirements, generating design 

variants, accelerating simulation setups, and assisting integration and release (Paliwal et al. 

2024). Yet organisations that scale beyond pilots share one trait: they treat governance as an 

engineering discipline, not just another review meeting. In fragmented tool landscapes and 

heterogeneous product domains, centralised control becomes a bottleneck, while laissez-faire 

creates risk, duplication, and drift. A federated governance model resolves this tension by 

combining autonomy for domain teams with shared, automated guardrails (Williams & 

Karahanna 2013). 

Governance is the rule set of policies, processes, roles, and metrics that keeps data and AI 

assets aligned with business goals, regulation, and ethics (Otto 2011). In our framework, Data 

Sovereignty, control over residency, access, and usage rights, is not a parallel construct but a 

governance goal: a sovereign configuration of the overall system (von Scherenberg et al. 2024). 

Sovereignty ensures that high-value data continues to flow while remaining compliant with 

legal, ethical, and strategic constraints, binding datasets, models, and processes to 

provenance, entitlements, and declared purposes through enforceable, machine-readable 

policies. Figure 12 illustrates key elements of federated AI governance in product development 

and other AI systems. 

 

Figure 12: Pillars of Federated Governance in Engineering AI Landscapes 

Federated governance spans the full product-development stack, as shown in Figure 3. At the 

core lies the context management, which captures lineage, usage, and audit evidence, serving 

as the metadata backbone for Data Governance. Here, sovereignty profiles and traceability 

ensure that every dataset, requirement, simulation, or release artefact is auditable and reusable. 
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Surrounding this core is the AI Platform, where Platform Governance enforces compliance by 

design through shared runtimes, orchestration, observability, and policy enforcement points. 

On top sits the Interoperability layer, providing the interfaces, APIs and communication 

protocols that link domains. This layer is shaped by Model & Use-Case Governance, which 

defines how prompts, models, and evaluations are integrated, monitored, and approved while 

remaining compliant with sovereignty constraints. The next layer Data Quality in the 

engineering toolchain is where domain teams create and curate data products, designs, and 

simulations, linking them back into the context modules under governance guardrails. Finally, 

the outermost layer of Federated Governance reflects Organisational & Decision Governance, 

the human system of roles, committees, and accountability that binds the stack together, 

ensuring that local autonomy across tools, data, and models remains aligned with enterprise-

wide sovereignty, compliance, and business objectives. To operationalise this model, federated 

governance unfolds across four interdependent areas: 

1. Data Governance: Data governance forms the foundation of any GenAI system by 

ensuring that information entering the AI lifecycle is reliable, traceable, and compliant 

with sovereignty rules. GenAI quality is bounded by data quality and semantics 

(Mohammed et al. 2025), thus, data governance encompasses the management of data 

quality, semantic consistency, classification, and retention, ensuring that only the 

necessary and permitted metadata are exposed to higher system layers. By embedding 

lineage and usage evidence in the knowledge graph, data governance establishes 

transparency and accountability at source. Sovereignty is realised through dataset 

profiles that encode access rights, residency, and sharing restrictions, automatically 

enforced through policy mechanisms. As GenAI becomes more agentic, data 

governance extends its scope to include autonomous data consumers and producers, 

defining their permissions and logging every access event as a traceable action. In 

doing so, it safeguards intellectual property, prevents data leakage, and enables 

responsible AI development across distributed domains. 

 

2. Model & Use-Case Governance and Regulatory Compliance: Model and use-case 

governance ensures that GenAI models remain effective, compliant, and auditable 

throughout their lifecycle. It manages the intake and prioritisation of use cases, defines 

model cards and versioning schemes, and implements evaluation and monitoring for 

performance, bias, and drift. Risk tiering aligns with the EU AI Act, while Responsible AI 

principles (Accenture 2024)—human by design, fairness, transparency, explainability, 

safety, accountability, compliance, privacy, and sustainability—are operationalised 

through approval and monitoring processes. Sovereignty is maintained by checking 

prompts, fine-tuning datasets, and RAG pipelines against sovereignty profiles to ensure 

that every artefact used in model training or inference respects declared usage rights. 

End-to-end audit trails document who used what data for which model, when, and for 

what purpose. As AI systems evolve toward agentic autonomy, model governance 

extends to continuous supervision of agents’ behaviours, defining approved roles, 

enforcing decision boundaries, and ensuring human-in-the-loop checkpoints with rapid 

rollback mechanisms (Kolt 2025). This way, it guarantees that innovation and autonomy 

coexist with accountability and compliance 

 

3. Platform Governance and Access & Usage Management: Platform governance 

translates policy into infrastructure, embedding compliance and sovereignty 

enforcement directly into the technical backbone of AI operations. It defines and 

manages shared runtimes, container orchestration, vector databases, secrets 

management, observability, and policy-enforcement points at both build-time and run-
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time. Through policy-as-code, it blocks non-compliant builds or deployments and 

enforces cost transparency, SLOs, and golden pipelines to ensure operational reliability. 

Sovereignty is preserved by enforcing data residency and segmentation through 

regional clusters and runtime isolation, ensuring that jurisdictional and contractual 

boundaries are respected by design. All access and usage are logged continuously, 

providing a verifiable record of platform activity. As AI becomes agentic, platform 

governance must include sandboxing, scoped authentication tokens, rate-limiting, and 

agent-aware observability—tracking decision traces and tool invocation logs to prevent 

privilege escalation and unauthorised lateral movement. By codifying compliance 

within the infrastructure itself, platform governance ensures that scalability and security 

advance hand in hand (e.g., Hurni et al., 2020). 

 

4. Organisational & Decision Governance: Organisational and decision governance 

establishes the human and procedural scaffolding that ensures accountability, 

coherence, and ethical alignment across federated teams. It defines clear roles, 

responsibilities, and RACIs, creates lightweight but effective change-control processes, 

and introduces oversight bodies such as AI steering committees and ethics boards to 

manage high-risk approvals and cross-domain standards. Post-incident reviews, replay 

sessions, and continuous training in Responsible AI, privacy, and secure development 

maintain organisational readiness and trust. Sovereignty becomes a leadership KPI, with 

compliance rates, audit outcomes, and data-quality metrics linked to performance 

incentives. As AI agents increasingly collaborate with humans, organisational 

governance expands its scope to define machine roles and supervision rules—clarifying 

when must humans approve, override, or intervene and how escalations are handled 

when agents face uncertainty. Through this hybrid accountability model, organisational 

governance anchors the system in human responsibility while enabling autonomy at 

scale. 

 

Figure 13: Governance Fabric for AI in engineering landscapes 

Organisational Governance

Data Sovereignty

Model / Use Case 
Development

Data Layer AI Platform

</>

Data Governance Model Governance Platform Governance

Human 
Accountability

Machine roles 
for agentic AI

Domain teams own 
end-to-end delivery



34 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.  

The areas form a single governance fabric as depicted in Figure 13. Data governance supplies 

reliable, sovereignty-bound inputs to model governance, which sets policy requirements and 

risk posture that platform governance enforces automatically at build- and run-time. 

Organisational governance provides accountability and fast decisions when tensions arise (e.g., 

when a sovereignty profile restricts training, or a platform policy blocks deployment). The 

Product Knowledge Graph is the shared backbone, linking lineage, model usage, and platform 

logs including agent actions into one auditable view. These interconnections keep domain 

autonomy aligned with enterprise sovereignty and compliance objectives.  

In industrial applications, where complexity, regulation, and global competition converge, 

governance across these four areas is infrastructure, not bureaucracy, the fabric that makes AI 

safe, scalable, and competitive. Without data governance, trust in inputs collapses; without 

model governance, bias and drift erode value; without platform governance, scaling breaks 

under complexity; without organisational governance, accountability diffuses, and sovereignty 

remains aspirational. Treating governance as an engineering discipline, which is automated, 

federated, sovereignty-driven, and agent-aware, is a competitive prerequisite for the GenAI 

economy. 

  

Industry Insights into Model Governance

Marcel Altendeitering

Head of Department

Fraunhofer ISST

Tobias Guggenberger

Group Lead

Fraunhofer ISST

The EU AI Act distinguishes between different types of AI systems based on their
risk level. High-risk AI systems (e.g., systems based on personal data or targeting
critical infrastructure) are required to perform rigorous data governance activities
to provide transparency and minimize risks. These requirements include ensuring
that training, validation, and test data sets are relevant and accurate. For instance,
they should avoid bias in the data set.

To simplify and support the data governance activities required by the EU AI Act,
we utilized AI methods. Specifically, we implemented solutions for automatically
generating and analyzing metadata to enhance data lineage and track the origin of
data sets. Additionally, we implemented algorithms to detect potential biases
(e.g., using techniques for identifying feature importance).

As part of our use case, we found that AI has great potential for addressing the
data governance requirements posed by the EU AI Act. By combining multiple
solutions for different governance aspects, the developers of high-risk AI systems
can reduce the efforts for implementation.
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Stages of AI Readiness in Engineering 

The framework described in the previous Section (see Figure 3) represents the foundations and 

prerequisites for enabling scalable AI applications in engineering. To provide companies with 

guidelines for enabling AI in their product development processes, this chapter presents a 

maturity model that rates the maturity level of use cases with respect to the type of system 

integration. 

 

Figure 14: Horizontal and Vertical Integration in Engineering AI Use Case Implementations 

Figure 14 provides an (illustrative, non-exhaustive) overview of the creation of engineering 

artifacts throughout the product development process. A distinction is made between two 

types of integration in systems engineering. Vertical integration describes the successive 

processing of artifacts within a domain (e.g., from unstructured requirements to system 

requirement specifications to detailed hierarchical requirement models), while horizontal 

integration describes the linking and traceability of artifacts across domain boundaries (Eigner 

2021). These properties can also be transferred to AI use case implementations. Vertical use 

cases only access data from the domain that also uses the results of the use case. Horizontal 

applications access data from other domains, which requires traceability of artifacts throughout 

the product development process. To assess the maturity of enterprise AI applications, the 

automation levels of autonomous driving are proposed in the literature (SAE 2014). These divide 

the automation levels for AI applications in engineering into six discrete stages, ranging from 

fully manual engineering without AI use (level 0) to fully autonomous AI engineering (level 5) 

(Bernijazov et al. 2025). 

Figure 15 shows the different levels for vertical (top) and horizontal (bottom) AI integrations and 

describes each level. The maturity levels of vertical integration refer to the degree of autonomy 

of AI applications regarding the performance of engineering tasks within a development 

domain. In contrast, the maturity levels of horizontal integrations refer to the degree of 

autonomy regarding the networking and traceability of artifacts from different domains. While 
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maturity level 0 does not involve any application of AI, the degree of autonomy increases 

successively with each maturity level until, at level 5, AI can perform domain-internal (vertical) 

and cross-domain (horizontal) tasks completely autonomously. 

 

Figure 15: Stages of Vertical and Horizontal AI Readiness in Engineering 

The automation levels serve as a basis for assessing the maturity of the use cases in the 

following Section. Various publications from the literature are analyzed and classified according 

to their vertical and horizontal maturity levels.  
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In this Section, we present several AI use cases across the six development domains in the V-

model as well as cross-domain use cases. For each of the six development domains, three 

promising use case classes are presented that exemplify the current state of the art as reflected 

in the scientific literature. These examples provide a concise overview of the application of AI 

in the respective development domain and are intended to support C-level executives and 

engineers in identifying high-priority AI applications. In addition, key challenges are analyzed 

that currently hinder further increases in the automation levels, as defined by the maturity 

model shown in Figure 15. The selection of use cases does not claim to be exhaustive but instead 

deliberately focuses on high-value approaches that have already led to significant progress and 

innovation in literature.5 The use cases are summarized at the end of this Section, cross-domain 

applications are presented, and they are evaluated according to their vertical and horizontal 

maturity levels in line with the previous sections (see Figure 15). 

Figure 16 illustrates the V-model for the development of mechatronic and cyber-physical 

systems according to VDI (2021) and provides an overview of the engineering domains 

introduced in the following Subsections. 

 

Figure 16: Overview of the six engineering development domains of the V-model  

 
5 Further engineering use case proposals and summarizations are presented by Bleisinger & 
Eigner (2025), Steffen et al. (2025) and Liang et al. (2025). 
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Requirement Engineering 
 

The integration of AI, and specifically LLMs, into requirement engineering is transforming how 

engineering teams elicit, specify, and refine requirements throughout the product development 

lifecycle (Arora et al. 2024a). Traditionally a manual and therefore error-prone process, 

requirement engineering can benefit in the future from AI's capability to process vast volumes 

of unstructured and semi-structured information (Cheng et al. 2024).  

AI models are capable of ingesting diverse inputs such as natural language requirements, 

technical documentation, programming code, examples, and sketches (Hemmat et al. 2025). 

From these, they can generate outputs that include (software) requirements and specifications, 

code and pseudocode, and models such as UML or SysML diagrams. The key benefits of 

applying AI in requirement engineering include enhanced quality and consistency of 

requirements, accelerated elicitation and management processes, improved traceability and 

connectivity between requirements, and the generation of artifacts that support downstream 

engineering tasks (Hemmat et al. 2025).  

AI applications in requirements engineering can be grouped into three main categories of tasks 

as structured similarly by Hemmat et al. (2025) for hardware requirements and Norheim et al. 

(2024) for software requirements:  

• Requirement Generation, where AI assists in drafting consistent and structured 

requirements and requirement models from unstructured inputs, such as stakeholder 

inputs or regulatory documents, 

• Requirement Optimization, which focuses on evaluating and optimizing requirements 

for clarity, completeness, consistency, and compliance with formal language standards 

or domain-specific guidelines, 

• Requirement Analysis, where AI is used to track dependencies, identify conflicts, and 

align requirements with each other and with downstream artifacts, such as MBSE 

models, functional and logical models or test cases. 

Requirement Generation 

One of the most immediate applications of GenAI is in the generation of requirements from 

unstructured stakeholder input, such as interviews, notes, or informal descriptions. By 

leveraging LLMs, this input can be transformed into well-structured, formalized requirement 

statements that align with engineering standards and stakeholder demands. This not only 

accelerates the elicitation process but also reduces the risk of overlooking critical stakeholder 

needs. Furthermore, GenAI can iteratively refine initial drafts through interactive dialogues, 

allowing stakeholders to clarify and validate requirements in real time. Ronanki et al. (2023) 

demonstrate that LLMs like OpenAI’s ChatGPT are effective in eliciting functional and non-

functional requirements through conversational prompts. Similarly, Nouri et al. (2024) show that 

safety requirement elicitation for autonomous driving systems can be significantly accelerated 

using LLMs, providing a structured and complete set of requirements faster than traditional 

manual methods. Voria et al. (2025) introduce RECOVER, a pipeline that structures stakeholder 

dialogue and drafts system requirements using Llama 2. 
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Requirement Optimization 

AI supports optimization and quality assurance by detecting issues like ambiguity, redundancy, 

inconsistency, and syntactic errors. These models can evaluate requirements against 

predefined quality criteria and suggest rewordings that improve clarity, verifiability, and 

completeness. This leads to fewer misunderstandings and rework in later development phases. 

Additionally, AI can be used as a first-pass reviewer, enabling engineers to focus their manual 

reviews on higher-level content validation rather than basic linguistic or structural issues. Bashir 

et al. (2025) demonstrate how LLMs can be used to detect and explain ambiguities in 

requirements from the railway industry. Lubos et al. (2024) report that LLMs can reliably identify 

quality flaws in software requirements and suggest alternatives that are more precise, verifiable, 

and appropriate. Fantechi et al. (2023) further demonstrate that LLMs can detect internal 

inconsistencies across requirement sets, expediting the refinement process. Saleem et al. 

(2025) show that prompt-engineered LLMs can effectively classify requirements into functional 

and non-functional categories, improving consistency and traceability. Gärtner & Göhlich 

(2024) present an LLM-based approach to optimize automotive requirements regarding 

ambiguity, redundancy, consistency, clarity and compliance. However, these studies stress the 

necessity of expert validation and human-in-the-loop approaches to ensure reliability. 

Requirement Analysis 

Beyond textual interpretation, AI facilitates requirement traceability creation by extracting 

knowledge from requirements and making it usable for downstream engineering tasks. This 

includes identifying relationships between requirements, ensuring compliance with standards 

and regulations, categorizing them, and linking them to relevant models, design elements or 

test cases. As a result, complex requirement sets become more navigable across large-scale 

projects. Moreover, the generation of structured representations, such as knowledge graphs, 

supports traceability and consistency across different engineering domains and toolchains. Liu 

et al. (2025) introduce a method for building knowledge graphs from aerospace requirements 

using LLMs, which helps improve manageability and comprehension of complex systems. 

Similarly, Tikayat Ray et al. (2024) demonstrate how NLP algorithms can understand and map 

interdependencies between requirements in the aerospace domain. Hassine (2024) expands on 

this by showing how LLMs can be used to create traceability links between requirements and 

goal models. Using the example of software requirements, Masoudifard et al. (2024) show how 

specifications from regulations and standards can be considered to align compliance with 

corresponding software requirements. 

Further publications, e.g. Fuchß et al. (2025a & 2025b), Niu et al. (2025), Hey et al. (2024 & 

2025), examine the possibilities of LLMs for automated traceability creation and validation 

between requirements and other engineering artifacts. This includes  

• the automated creation of system architectures in the context of MBSE (Akundi et al. 

2024, Meng & Ban 2024, Bonner et al. 2024), 

• the accelerated design of CAD models (Li et al. 2025a), 

• the generation of simulation setups and parameters (Lebioda et al. 2025), 

• the generation of software code (Han et al. 2024a) 

• as well as the automated creation, execution and verification of test cases (Alagarsamy 

et al. 2024, Reinpold et al. 2024, Ferrari & Spoletini 2025). 



41 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.  

These publications underline both the growing interest in research and the industrial relevance 

of requirement traceability along the product structure and along the product development 

process.  

Despite these promising use cases, several challenges currently constrain the widespread AI 

adoption in requirements management. 

• Data-related challenges include the limited availability of requirement-specific 

datasets, inconsistent annotation standards, and inadequately defined requirement 

engineering use cases (Norheim et al. 2024). These gaps hinder model training, 

benchmarking, and reliable evaluation across domains. 

• Methodological and organizational challenges include the development of new 

requirement engineering practices to incorporate AI tools, explainability of AI-

generated outputs, and the need for human-centric evaluation of requirements (Habiba 

et al. 2024). Additionally, the misalignment between AI developers and engineering end-

users introduces further complexity in tool integration and practical application. 

• Technical challenges, as noted by Hemmat et al. (2025), revolve around ensuring the 

completeness and quality of AI outputs, handling code and test generation effectively, 

managing input prompt design, and maintaining structured formatting. These issues 

directly impact the usability and trustworthiness of AI-generated requirements artifacts. 

To address these challenges, dedicated research efforts and the development of industrial 

applications are needed. Methodological and organizational challenges require new 

approaches to effectively integrate GenAI into requirements engineering. Initial contributions 

in this area include the framework proposed by Ahmad et al. (2023) for human-centered AI-

based requirements engineering, which emphasizes collaboration between engineers and AI 

systems. Complementing this, Vogelsang and Fischbach (2025) provide practical guidelines for 

applying AI to requirements engineering tasks, covering prompt design strategies, quality 

validation methods, and approaches for integration into existing development workflows.  

If these challenges are overcome, GenAI can significantly increase the degree of automation in 

requirements engineering. Figure 17 shows the maturity levels of automated requirements 

management based on the automation levels. 

 

Figure 17: Vertical automation levels in AI-based requirements engineering applications  
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Industry Insights into Requirements Engineering
Automotive suppliers often receive many customer input documents per project with
large volumes of text, ranging from 50 to 300+ pages of structured and unstructured text
across multiple files that must be analyzed to extract and classify requirements.
Normally, this responsibility is tasked to experienced systems engineers who manually
read, identify, categorize, and map relevant requirements into the supplier’s product
hierarchy. Human engineers must read between the lines to identify requirements
without keywords, or requirements irrelevant to the software domain such as those
about paint composition. This process is not only time-consuming and mentally taxing
but can also be prone to human error and inconsistencies if several engineers are
working in silos. In one past client case, we estimated the effort required to be three
engineers working full-time over three months to complete a single requirements input
package.

To address these challenges, the Accenture team has developed an agentic AI
approach leveraging Generative AI (GenAI) techniques built upon Natural Language
Processing (NLP) and reasoning models to parse input documents, identify both new
and duplicate requirements from an existing database, group related requirements, and
flag requirements needing updates or clarification based on the newly extracted input
requirements. We have prototyped this approach across several real-world datasets
and consistently demonstrated drastic time savings, reducing a task that once took
months to seconds. The results are also more consistent and less error-prone,
providing a dependable baseline for engineering teams to refine further through their
projects lifecycle.

A key insight from this use case was the implementation of the AI to reason beyond
traditional keyword-based automation features of leading requirements management
tools. The system now interprets project context against input document context,
understands the semantic structure of requirements, and performs reasoning to assess
relationships and redundancies which previously were only possible through human
judgment. This represents a paradigm shift in how engineering organizations can scale
quality and efficiency leading to decreased lead time to development with more time for
innovation.

Dr. Modar Horani

Managing Director

Accenture

Garrett Graham

Senior Principal

Accenture
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Architecture 

The development of system and discipline-specific architectures is evolving with the 

integration of AI, which enables automation and augmentation of model creation, 

transformation, and analysis. One of the key benefits of AI in architecture development is the 

automated generation of system models from natural language requirements. AI and in 

particular GenAI can interpret textual inputs and propose initial SysML diagrams or block 

definitions, significantly accelerating the early stages of model creation and reducing manual 

effort (Bader et al. 2024). This capability not only speeds up the modeling process and ensures 

reusability of existing models but also helps ensure traceability from requirements to design 

artifacts and consistency in system development (Bernijazov et al. 2025).  

AI applications in architecture development and MBSE typically process a variety of inputs, 

including requirements (Timperley et al. 2025), product design documentation (Zhang et al. 

2025a), and detailed system specifications and architectures (Bernijazov et al. 2025). These 

inputs are translated into outputs such as SysML-based system architectures, functional 

models, and interconnected artifacts spanning across the engineering lifecycle. The 

advantages are multifold. Mottaghian et al. (2025) report significant efficiency gains and time 

savings, enhanced error reduction and quality assurance, the ability to establish and reuse 

engineering knowledge as a strategic resource, and improved human-centricity by allowing 

engineers to focus on higher-level, non-repetitive and creative tasks. According to Hovemann 

et al. (2025), AI use cases in architecture development and MBSE can be classified into three 

main categories:  

• Model Generation focuses on the automated creation of system models from technical 

inputs, such as natural language requirements, interface descriptions, or technical 

documentations. 

• Model Optimization focuses on AI evaluating and optimizing models for correctness, 

completeness, and compliance with modelling standards or engineering guidelines. 

• Model Traceability involves using AI to link architecture artifacts with each other as well 

as with artifacts from other product development disciplines, and to retrieve 

information from them. 

Model Generation 

The generation of functional and architectural models is by far the most studied and practically 

implemented AI use case in the architecture domain. LLMs can automate the creation of SysML 

models and other formal representations based on unstructured or semi-structured inputs. For 

instance, Patel et al. (2024) and Timperley et al. (2025) both showcase how LLMs can derive 

SysML model entities from textual requirements. While Patel et al. (2024) focus on extracting 

model components from general unstructured requirement documents, Timperley et al. (2025) 

demonstrate a more domain-specific transformation of functional requirements for spacecraft 

systems into structured architectures consisting of functions, modes, and components. 

Expanding into simulation and dynamic modeling, Zhang et al. (2025a) apply GenAI to generate 

executable models that represent the continuous dynamic behavior of aircraft electrical 

systems, starting from design documentation. A similar emphasis on structured model output 

is found in the work of Johns et al. (2024), who integrate a LLM into CATIA Magic to automatically 

generate conceptual SysML models for rocket systems within the design environment itself. In 

the work of Von Heissen et al. (2024), a plugin for Cameo Systems Modeler is developed that 

enables LLM-based generation of functional and logical architectures including SysML blocks, 
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interconnections, stereotypes, and diagrammatic representations for autonomous remote-

controlled cars. Lameh et al. (2025) extend the application of LLMs beyond SysML by 

demonstrating the automated creation of feature models to support product line engineering, 

thus addressing variability management in system families. Bouamra et al. (2025) present a 

multi-agent system called SysTemp, that leverages LLMs to automatically generate SysML v2 

models from natural language specifications, focusing on syntax correction and iterative 

refinement to address the lack of training data and improve model quality in systems 

engineering. Taken together, these studies illustrate the breadth of AI's potential in MBSE and 

discipline-specfic architecture development, from generating functional architecture and 

simulation models to create discipline-specific modeling artifacts, highlighting both the 

versatility and growing maturity of AI-assisted system modeling approaches. 

Model Optimization 

The assessment and optimization of existing models as well as the generation of alternative 

modeling variants is highly relevant in industry. AI holds significant promise in supporting 

engineers by identifying structural gaps, highlighting inconsistencies, and suggesting 

improvements based on learned modeling best practices. Moreover, it can assist in comparing 

and ranking alternative model structures or architectures with respect to predefined system 

goals, such as modularity, scalability, or fault tolerance. Such capabilities can help reduce 

modeling errors early in the development process and enhance model maintainability over 

time. In this context, Sultan & Apvrille (2024) present an AI-supported framework that leverages 

LLMs to detect inconsistencies in SysML models. Even though the number of publications on 

model optimization is not yet very high, we expect it to grow rapidly soon due to its high 

relevance to practice and the recent introduction of the textual SysML v2 notation. 

Model Analysis 

Another emerging application is the analysis of system architectures, particularly creating 

traceability across RFLPT artifacts and downstream design artifacts. As mentioned in the 

Subsection on requirement engineering, linkings between requirements, architecture objects, 

design drafts and test cases are crucial for end-to-end traceability along the product 

development process and can be seen as the basis for a cross-domain AI application. For 

example, Fuchß et al. (2025a) present an approach to link architecture documentation to 

architecture models using a RAG-based LLM application.  Wawrzik et al. (2025) present a 

Knowledge Graph Generation Framework for Systems Engineering (KGG4SE), which 

automatically generates and quality-checks knowledge graphs from diverse sources, integrate 

them into MBSE tools, and thereby improve graph consistency, structure, and scalability. 

Karagoz et al. (2024) introduce a graph-based approach transforming SysML models into KGs. 

They apply a graph CNN to detect missing links, which addresses the problem of incomplete 

knowledge in MBSE system models and improves robustness, reliability and efficiency of 

complex system development. An AI-integrated framework for digital continuity and MBSE 

improvements is proposed by Xu et al. (2025a), focusing on enabling continuous feedback from 

early design and operational phases. Hanke et al. (2025) propose MBSE-Graph-RAG, a 

conceptual framework, which integrates knowledge graphs with RAG to enhance MBSE 

usability, accessibility, and automation by enabling natural language interaction, automated 

system architecture generation, and improved collaboration. 

Further publications deal with discipline-specific automation solutions for electronic (Li et al. 

2025f, Blocklove et al. 2023) and software architecture design (Esposito et al. 2025, Schmid et 

al. 2025). 

Despite its promise, the application of AI in architecture development faces several challenges: 
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• Data limitations: There is a scarcity of structured, high-quality data specific to system 

engineering and discipline-specific architecture development, which hinders model 

training and generalization (Poulsen et al. 2025), 

• Adoption barriers: Engineers require new skills to effectively use AI tools, including 

prompt engineering, model validation and evaluation. There is a steep learning curve 

and cultural resistance in some organizations. 

• Need for supervision: While LLMs can generate comprehensive models, human 

supervision remains essential to ensure correctness, completeness, and adherence to 

engineering standards (Von Heissen et al. 2024; Timperley et al. 2025). Therefore, the 

integration of explainable and trustworthy AI is essential for architectural developments 

(Poulsen et al. 2025).  

To address these challenges, Hovemann et al. (2025) recommend the development of 

optimized prompting techniques tailored for system engineering tasks. Additionally, Bernijazov 

et al. (2025) emphasize the importance of increasing the maturity of GenAI use cases step-by-

step, starting with simpler tasks and gradually extending AI's role as confidence, 

trustworthiness and reliability improve. Figure 18 provides an overview of the maturity levels of 

AI-based architecture development applications and assigns core capabilities to the 

automation levels. 

 

Figure 18: Vertical automation levels in AI-based architecture development applications 
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Industry Insights into Agentic AI in MBSE

Dr. Christoph Schulze

Manager & MBSE Expert

Accenture

In complex, multi-disciplinary engineering environments, MBSE often plays a central
role in defining product architectures, managing variability, and capturing cross-
domain relationships. However, the growing scale and heterogeneity of digital
engineering ecosystems expose a persistent limitation: insufficient integration
between MBSE tools and domain‐specific toolchains, such as requirements
management, CAD/CAE, and simulation. Without strong bidirectional links, model
updates and changes in one domain may not be reliably reflected in others, leading
to data inconsistencies and reduced confidence in cross-discipline decisions.

To address these challenges, the Accenture team has integrated an Agentic AI
system directly into the MBSE tool Catia Magic. This agentic AI approach combines AI
expertise, in-depth understanding of MBSE methods and knowledge of the underlying
engineering tools, a combination essential to meaningful context to AI-driven MBSE
solutions. By understanding not only the model structures but also their engineering
context (supplied by engineers and stored in RAGs), the AI can autonomously
retrieve, interpret and relate data.

The agentic AI assists human engineers by automating repetitive modeling tasks,
suggesting model updates, and highlighting inconsistencies, while human experts
remain central in validation and decision-making. This has proven particularly
effective in strengthening traceability across model elements and improving the
consistency and completeness of variant configurations throughout the system
lifecycle. A key insight from this initiative is that tight tool integration is essential for
the successful deployment of Agentic AI in engineering environments. The ongoing
introduction of SysML V2 will further accelerate this transformation, as its textual
syntax and standardized APIs will enable much easier and more seamless integration
of AI within MBSE ecosystems.

Martin Pauls

Systems Engineering 

Manager

Accenture
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Product Design 

AI has emerged as a transformative force in product design, particularly in CAD (Picard et al. 

2025). It leverages a variety of inputs, including product specifications, part descriptions, 

sketches, and 3D CAD models, to produce optimized or entirely new designs in both two and 

three dimensions. Beyond generating geometry, GenAI systems are capable of learning 

structured design representations and similarity measures, enabling intelligent retrieval and 

modification of existing models. The benefits of applying AI in product design are multifaceted. 

According to the Accenture Research Report (2024), significant efficiency and time savings can 

be achieved. Gerhard et al. (2025) further emphasize that GenAI enables a human-centric 

design process by taking over repetitive tasks, thereby allowing engineers to focus on high-

level conceptual and strategic design. GenAI also enhances creativity by supporting rapid idea 

generation and accelerates the evaluation of design alternatives through simulation or rule-

based assessments. 

However, the application of AI is not only desirable in M-CAD or E-CAD developments. 

Embedded software development in particular benefits from AI applications, as software code 

follows strict syntaxes of domain-specific languages and is therefore machine-readable. To 

address the complexity of modern development processes, we divide the Product Design 

Subsection into three parts, reflecting the three core disciplines of mechatronic product 

development. While mechanical design is carried out using M-CAD tools, the design of 

electrical and electronic components is performed with E-CAD tools. The rapidly growing 

importance of embedded software development, particularly in recent years, is also covered in 

this chapter and executed in various CASE6  tools. 

M-CAD Applications 
The application of AI in mechanical product design can be broadly categorized into three major 

task domains, as suggested by Heidari & Iosifidis (2024):  

• Representation Learning, which enables the extraction and structuring of design 

knowledge from existing models, including similarity measures and feature hierarchies 

• Model Optimization, where GenAI assists in refining designs to meet specific 

engineering criteria  

• Model Generation, where new design concepts or geometries are synthesized based 

on input constraints, specifications, or learned patterns from prior data. 

Representation Learning 

Representation Learning focuses on understanding and abstracting geometric and functional 

features from CAD models and retrieving existing, very similar designs as soon as possible. 

These learned representations serve as the foundation for a variety of downstream tasks. Jones 

et al. (2023) describe how models can learn meaningful features from CAD data to support 

advanced modeling and analysis. This includes classification of CAD parts based on geometric 

or functional criteria, segmentation of models into semantically meaningful components to 

support feature editing, and similarity analysis for retrieving comparable parts from large 

databases. According to Heidari & Iosifidis (2024), AI-based similarity retrieval can significantly 

support the creative process by surfacing existing designs that serve as alternatives or 

inspiration. Many publications show approaches on how the similarity to existing CAD designs 

 
6 CASE: Computer Aided Software Engineering. 
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can be evaluated automatically. These are based on GNNs (Quan et al. 2024), autoencoders 

(Jung et al. 2024) and unsupervised learning algorithms such as graph contrastive learning (Qin 

et al. 2025). Furthermore, Gao et al. (2024) present a weakly-supervised diffusion-based 

approach called DiffCAD, which retrieves and aligns CAD models from single RGB images.  

Representation learning and model retrieval have already been extensively researched, which 

is why the approaches presented here represent only a small selection of publications. For more 

in-depth review papers, please refer to Heidari & Iosifidis (2024) and Ning et al. (2025). 

Model Optimization 

In the domain of optimization, GenAI contributes to the refinement of design alternatives that 

are optimized for specific engineering criteria such as mass, stiffness, and stress distribution, 

while also incorporating manufacturing constraints. One prominent technique in this category 

is Generative Topology Optimization (GTO). Shin et al. (2023) provide an overview of how DL 

supports GTO using surrogate models that reduce computation time, handling high-

dimensional inputs, learning of optimal parameters, and enabling exploration of broader design 

spaces. Qin et al. (2024) introduce an intelligent LLM-based system for shear wall structures 

that translates natural language into executable code, integrates generation with a two-stage 

optimization process, and accelerates design efficiency by up to 30 times while ensuring safety 

and cost-effectiveness. Major CAD software vendors like PTC (2024), Dassault Systèmes (2024), 

and Siemens (2024) have incorporated such optimization features into their platforms already, 

facilitating integrated simulation and validation workflows. Optimization GenAI applications are 

typically coupled with a simulation or a predictive AI model (see Surrogate Modeling use cases 

in Section Simulation) to evaluate the effect of the optimized modification on the engineering 

criteria (Kang 2025).  

 

 

 

Industry Insights into Technical Drawing Assistant
The creation and validation of technical drawings and 3D models are essential for
ensuring design integrity and compliance with engineering standards. However,
inspection and review processes are often manual and time-consuming. Frequent
revisions and the need for version control further increase the effort, while a lack of
harmonization leads to inconsistencies and potential design errors. A major part of
this complexity arises from collaboration between OEMs and suppliers, where
communication, data handover, and alignment efforts are especially high.

To overcome these challenges, an automated inspection solution was developed
that integrates 2D and 3D drawing checks directly into the engineering workflow. The
system combines advanced image processing and rule-based validation techniques
to automatically identify design errors and formal inconsistencies. By embedding the
inspection process into the existing engineering environment, it enables automatic
validation and minimizes design misinterpretations in cross-company interactions.

The result is a streamlined, standardized validation process that significantly
reduces lead time and inspection effort for 3D checks. Beyond cost and time savings,
the solution enhances data consistency across projects and supports better
decision-making through automated reports and analytics. Ultimately, this approach
transforms engineering validation into a continuous, data-driven process that
ensures higher reliability and faster time to market. This leads to measurable quality
improvements and stronger collaboration efficiency across the entire supply chain.
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Model Generation 

Generation involves the creation of new designs based on minimal input, such as natural 

language, sketches, or point cloud data. The goal of generative models is to create 2D sketches 

or 3D CAD models based on the inputs. 

In 2D sketch generation, Li et al. (2025c) demonstrate how stable diffusion models can generate 

car rim designs from basic prompts and subsequently transform them into 3D models. Liu et al. 

(2023b) explore how tools like DALL-E can generate product sketches from text, supporting 

early design ideation. Massoudi & Fuge (2025) compare the performance of a multi-agent and 

two-agent system for early-stage design of a solar-powered water filtration system. Both 

agentic approaches lead to valid JSON structures but only cover few requirements.  In 3D model 

generation, several approaches exist. Badagabettu et al. (2024) show that simple text prompts 

can generate basic geometries, though increasing design complexity and sufficient quality 

requirements remain challenging. Xu et al. (2024) propose a multimodal model that integrates 

text, 2D images, and 3D point clouds to generate usable CAD geometries. Guan et al. (2025) 

present CAD-Coder, a system that incorporates reinforcement learning rewarding geometrical 

plausibility and syntactic correctness in the finetuning process. By leveraging a dataset of 

110,000 triplets containing text prompts, CadQuery code (CADQuery 2024), and resulting 3D 

models, CAD-Coder achieves high-fidelity parametric model generation. Zhou et al. (2025) 

introduce CAD-Judge, which includes review modules to efficiently use LLMs for text-to-CAD 

generation, outperforming vision-language model-based methods in both accuracy and 

computational efficiency. Li et al. (2025e) develop LLM4CAD, an approach leveraging GPT-4 and 

GPT-4V for zero-shot 3D CAD generation from multimodal inputs, showing strong potential but 

revealing that text-only prompts often outperform multimodal ones except for complex 

geometries like gears and springs. A multi-agent framework is presented by Panta et al. (2025), 

who apply multi-modal LLMs to autonomously generate and iteratively refine parametric CAD 

models. Their framework consists of five agents (design expert, CAD script writer, executor, 

script execution reviewer, and CAD image reviewer) that work collaboratively together and 

generate CAD models by iteratively creating, executing, and refining scripts based on both 

textual prompts and visual feedback. 

E-CAD Applications 
The application of AI in electronic component design can be structured into three main E-CAD 

and Electronic Design Automation (EDA) application classes, as described by Pan et al. (2025): 

• RTL Design, where AI supports creating Register-Transfer Level (RTL) descriptions in 

Hardware Description Language (HDL) such as Verilog or VHDL, defining dataflow, 

logical operations, and the circuit’s functional behavior for synthesis. 

• Logic Synthesis and Physical Design, where AI assists in transforming RTL descriptions 

into gate-level representations, optimizing placement, routing, clock trees, and 

power/ground networks to produce the final geometric layout. 

• Analog Circuit Applications, where AI aids in selecting circuit topologies, sizing 

devices, and optimizing gain, bandwidth, and noise, including precise layout design for 

mixed-signal environments. 

RTL Design 

Ma et al. (2024a) introduce VerilogReader, a framework that integrates LLMs into the coverage 

directed test generation process to understand Verilog code and generate test inputs for 

uncovered lines or branches, significantly outperforming random testing for simple and 
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medium-level designs. Thakur et al. (2023) present AutoChip, a fully automated, feedback-

driven approach that uses LLMs to iteratively generate and refine HDL code by leveraging 

feedback from Verilog compilers and simulations to identify and rectify errors. Tsai et al. (2024) 

propose RTLFixer, a novel framework designed to automatically fix syntax errors in Verilog code 

using LLMs, employing RAG and ReAct prompting to enable autonomous debugging with 

compiler feedback and human expert guidance. Chang et al. (2023) develop ChipGPT, a four-

stage zero-code logic design framework that utilizes LLMs to automatically generate hardware 

logic designs from natural language specifications, demonstrating improved programmability 

and broader design optimization space. Collectively, these works demonstrate a strong trend 

towards automating critical and labor-intensive stages of RTL design, from code generation and 

testbench creation to error correction, by harnessing the advanced comprehension and 

generative capabilities of LLMs, often through iterative processes and structured feedback 

mechanisms. 

Logic Synthesis and Physical Design 

LLMs are increasingly being applied to enhance logic synthesis and physical design, 

streamlining various complex and time-consuming EDA workflows. Wu et al. (2024a) introduce 

ChatEDA, an autonomous agent designed to optimize the entire RTL to Graphic Data System 

Version II (GDSII) design flow through task decomposition, script generation, and task 

execution. To address challenges in EDA tool documentation Question-and-Answer, Pu et al. 

(2024) propose RAG-EDA, a customized RAG framework that leverages domain-specific 

techniques for better semantic understanding, reranking, and accurate answer generation. 

Similarly, Liu et al. (2023a) explore domain-adapted LLMs for industrial chip design with 

ChipNeMo, focusing on applications like an engineering assistant chatbot, EDA script 

generation, and bug summarization as well as analysis through specialized domain adaptation 

techniques. Chen et al. (2023b) present TRouter, a machine learning model-based framework 

for thermal-driven Printed Circuit Board (PCB) routing, which predicts thermal distribution to 

guide wire and via placement for lower-temperature designs. These studies highlight a focused 

effort to embed advanced AI capabilities into the later stages of chip design and physical 

implementation, with the goal of automating complex tasks, enhancing decision-making, and 

minimizing manual intervention. As with mechanical design, experience and data from previous 

product developments can be extremely important for such applications, as a great deal of 

implicit knowledge is contained in existing electronic designs. 

Analog Circuit Applications 

Analog circuit applications involve designing circuits that process continuous signals, such as 

amplifiers, filters, and converters. AI, particularly LLMs and GNNs, can significantly aid in 

automating and optimizing their complex design processes. For example, Chang et al. (2024) 

introduce LaMAGIC, a pioneering LLM-based topology generation model for automated analog 

circuit design, especially for power converter applications, which can efficiently generate an 

optimized circuit design from custom specifications in a single pass. Nau et al. (2025) propose 

SPICEAssistant, an LLM-based agent equipped with various tools to interpret feedback from the 

LTSpice circuit simulator and retrieve information from datasheets using RAG, demonstrating a 

significant improvement in the ability of LLMs to understand, adapt, and dimension electronic 

circuits. Plettenberg et al. (2025) present a GNN-based approach for automating the addition 

of optimizing components like pull-up/pull-down resistors, Resistor-Capacitor (RC) filters, and 

decoupling capacitors in PCB schematics to improve robustness and reliability by representing 

schematics as bipartite graphs and predicting component positions. Said et al. (2023) 

investigate the use of GNNs for circuit design completion in partially designed analog circuits, 
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where they identify missing components and predict their placement and connectivity within 

the circuit through a link prediction problem. 

CASE Applications 
The application of AI in embedded software development is poised to revolutionize the field, 

particularly with the advent of LLMs which demonstrate strong capabilities in understanding 

and generating code. As highlighted by Petrovic et al. (2025), industries with complex products 

such as the automotive industry can benefit heavily from AI adoption in the embedded software 

development, since stringent standards, hundreds of thousands of requirements and the trend 

toward software-defined vehicles lead to a huge amount of source code to be developed. 

Automating aspects of this development can significantly reduce human intervention and 

accelerate complex activities. In embedded software development, the application of AI, 

specifically LLMs, can be structured into three main classes: 

• Code Optimization, where AI algorithms are capable of iteratively improving code for 

performance, fix bugs, and generate interpretable policies. 

• Code Generation, where AI enables the automatic generation of executable code from 

diverse inputs like natural language requirements, formal specifications, or 

architectures, significantly boosting efficiency but demanding utmost precision and 

adherence to coding standards. 

• Code Analysis, where AI analyses code to ensure compliance with safety standards and 

automatically creates traceability links to other development artifacts.  

Code Optimization  

Code optimization focuses on enhancing software quality, performance, and correctness. 

Ishida et al. (2024) develop LangProp, an iterative framework that optimizes LLM-generated 

code performance through data-driven feedback, particularly for autonomous driving policies. 

Sevenhuijsen et al. (2025) introduce VECOGEN, which refines LLM-generated C code using 

iterative formal verification feedback to ensure correctness for safety-critical systems. Kirchner 

& Knoll (2025) present a framework that optimizes AI-generated C++ code for automotive safety-

critical systems via static verification and test-driven iterative refinement. These studies 

commonly emphasize iterative code refinement, guided by diverse feedback loops, to achieve 

high quality, correctness, and reliability, especially crucial for safety-critical applications. 

Code Generation  

Code generation in embedded software development harnesses LLMs to automate the creation 

of executable code from diverse specifications, significantly reducing development time and 

effort. Patil et al. (2024) propose the spec2code framework, which combines LLM-based code 

generation with formal verification to produce functionally correct, industrial-quality C code for 

critical embedded automotive software from diverse specifications, including formal ACSL. Liu 

et al. (2024a) empirically demonstrate the capability of GPT-4 to generate safety-critical C code 

for industrial domains, proposing a Prompt-FDC method that integrates functional, generalized 

domain, and constraint requirements to achieve high quality, completeness, and compliance. 

Nouri et al. (2025) developed a simulation-guided pipeline for LLM-based code generation, 

enabling iterative refinement and bug fixing of Python code for safety-critical automotive 

functions like Adaptive Cruise Control and Collision Avoidance by Evasive Manoeuvre based on 

feedback from virtual testing. Abdalla et al. (2024) explored automating the generation of 

MATLAB Simulink functions from software requirements for the automotive industry, leveraging 

fine-tuned open-source LLMs to create graphical programming code and documentation. 
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These works collectively highlight the potential of LLMs in automating code creation, 

particularly for safety-critical automotive applications, by emphasizing prompt engineering, 

iterative refinement, and integration with verification or simulation tools to ensure correctness 

and adherence to complex standards. Further publications extend AI's code generation 

capabilities to other specialized embedded software domains, including robotic controls (Luo 

et al. 2024), drones (Chen et al. 2023a), and microcontrollers (Haug et al. 2025). 

Code Analysis 

Code analysis focuses on understanding, verifying, and validating software code, ensuring its 

quality, correctness, and adherence to standards. Alturayeif et al. (2025) provide a 

comprehensive systematic literature review on machine learning approaches for automated 

software traceability, which is a crucial aspect of code analysis. Their work highlights how ML, 

DL, and LLMs are increasingly utilized to track and manage relationships between various 

software artifacts throughout the software development lifecycle particularly for safety-critical 

systems. This automated traceability, often formulated as a classification or ranking problem, 

links diverse artifacts like requirements, source code, and test cases, supporting essential 

processes such as change management, impact analysis, and quality assurance. The study 

emphasizes the growing adoption and superior performance of LLMs in this domain, while also 

addressing challenges like data scarcity and the need for standardized datasets. 

Summary 

Despite rapid advances, several challenges must be addressed for AI to become a robust part 

of product design workflows across the presented engineering disciplines. 

• Synchronization and parallel development across mechanics, E/E, and embedded 

software: Modern systems engineering requires tightly coordinated development of 

mechanical, electrical/electronic, and embedded software components. However, 

these domains often follow different development cycles, tool chains, and maturity 

levels, making it challenging to maintain consistent design baselines and ensure 

traceability across disciplines (Berriche et al. 2020). AI-based design assistants must 

handle asynchronous updates, conflicting requirements, and cross-domain 

dependencies, while supporting continuous integration of design changes. Without 

robust synchronization mechanisms, the risk of design inconsistencies, late-stage 

integration issues, and costly rework remains high. 

• Insufficient data availability and model robustness: The field continues to suffer from 

a lack of annotated and structured datasets, which limits the effectiveness of supervised 

learning approaches and necessitates reliance on unsupervised or self-supervised 

techniques. This data scarcity, combined with high variability in model performance 

across different design contexts, makes it difficult to ensure reproducibility and 

generalization of results (Heidari & Iosifidis 2024). 

• Challenges in human-AI collaboration: The integration of AI tools into collaborative 

design workflows raises important questions about how designers and engineers should 

interact with AI systems. As Bordas et al. (2024) highlight, deeper research is needed to 

define effective roles, responsibilities, and interaction patterns between humans and AI 

in the creative process, particularly when dealing with complex design requirements 

and interdisciplinary teams. 

• Technical limitations in generating and structuring 3D content: The automated 

creation of physically plausible and functionally valid 3D CAD models remains a 

significant technical hurdle. Guan et al. (2025) argue that overcoming this challenge 
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requires the development of unified datasets that link natural language prompts, 

generative code (e.g., CadQuery), and the resulting CAD models. Furthermore, to fully 

harness the capabilities of LLMs, it is necessary to make 3D data compilable in a 

software-like fashion, enabling the generation of interpretable and traceable model 

code that directly leads to valid 3D geometries. 

Overcoming these challenges leads to higher levels of automation in the application of AI in 

product design, as illustrated in Figure 19, but still requires further research efforts. 

 

Figure 19: Vertical automation levels in AI-based product design applications 
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Simulation 

GenAI and related AI technologies are increasingly transforming simulation processes in 

product development, enabling faster, more efficient, and more adaptive virtual testing. The 

benefits of AI-accelerated simulation are substantial. According to the review by Herrmann & 

Kollmannsberger (2024), AI can be used not only to substitute traditional simulation with 

surrogate models but also to enhance simulations by replacing specific components within the 

simulation chain. These improvements lead to reduced computation times and lower resource 

requirements while maintaining acceptable levels of accuracy. Moreover, neural networks can 

be used to construct new discretization schemes, leveraging building blocks such as automatic 

differentiation, gradient-based optimization, and GPU-based parallelization. Generative 

approaches further expand the scope of simulation by synthesizing entirely new simulation 

scenarios or datasets based on learned patterns. 

The application of GenAI in simulation can be broadly categorized into three major task 

domains:  

• Surrogate Modelling, which focuses on replicating simulation outputs with lower 

computational effort applying AI. 

• Simulation Optimization, where AI guides the tuning of design parameters within 

simulation loops. 

• Simulation Generation, where new simulation scenarios, models or inputs are 

generated or multi-agent systems are applied to automate end-to-end simulation 

processes. 

Surrogate Modelling 

Surrogate modelling is an emerging application area of AI in engineering simulation, where 

machine learning models, particularly neural networks, are trained to approximate the 

behaviour of complex physical systems with significantly lower computational cost. These 

models act as stand-ins for traditional numerical simulations, enabling rapid prediction and 

design iteration. A fundamental distinction in this field lies between data-driven neural networks 

and physics-informed neural networks (PINNs). While data-driven models learn input-output 

mappings purely from simulation or experimental data, PINNs incorporate physical laws, 

typically in the form of partial differential equations, directly into the loss function by penalizing 

deviations from known physical behaviour. This hybrid approach improves generalization, 

particularly in data-scarce areas, and enhances the physical plausibility of predictions 

(Herrmann & Kollmannsberger 2024). 

Recent research has demonstrated the versatility of surrogate modeling across a range of 

engineering domains. Hajisharifi et al. (2024) developed a reduced-order model that estimates 

critical simulation coefficients, drastically accelerating CFD simulation runtimes while 

preserving accuracy. Similarly, Jnini et al. (2025) presented a neural network-based, physics-

constrained mapping from geometric configurations to flow field variables such as velocity and 

pressure, specifically applied to CFD simulations of curved backward-facing steps. Their work 

highlights how surrogate models can be tailored for complex fluid flow problems with 

geometrically sensitive dynamics. 

In the structural mechanics domain, Sunil & Sills (2024) successfully predicted displacement 

fields in 2D FEM simulations using a PINN architecture, demonstrating that incorporating 
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physical constraints into learning enables accurate and generalizable surrogates for stress-

strain analysis.  

Simulation Optimization 

Simulation optimization leverages the power of AI to automate and accelerate the tuning of 

input parameters in complex engineering simulations. By integrating AI with conventional 

simulation tools, this approach enables engineers to explore design spaces more efficiently, 

identify performance bottlenecks, and optimize system behavior with minimal manual 

intervention. A key component of simulation optimization is automated sensitivity analysis, 

which assesses how changes in input parameters affect simulation outputs. Traditionally a time-

consuming task involving numerous simulation runs, this process can now be streamlined with 

AI models that learn the relationships between parameters and performance metrics. These 

models not only reduce computational overhead but also uncover non-obvious dependencies 

and interactions between parameters, enabling more targeted optimization strategies. In 

addition, parameter optimization is enhanced using generative models and intelligent search 

techniques. AI systems can propose candidate parameter sets based on learned patterns from 

historical simulations or desired output targets. Through iterative refinement, often guided by 

reinforcement learning or Bayesian optimization, these systems converge on optimal 

configurations that meet predefined objectives such as minimal energy consumption, 

structural integrity, or flow efficiency. Zhang (2025h) applies deep reinforcement learning 

algorithms to optimize turbulence model parameters, improving the accuracy and efficiency of 

CFD simulations. Zhang et al. (2025g) demonstrate how LLMs can act as decision-makers in 

parametric shape optimization for CFD simulations, efficiently guiding the search for optimal 

designs and outperforming classical optimization methods in convergence speed.  

Further Publications that perform optimizations based on generative algorithms are already 

widespread in the literature, particularly for CFD simulations (Chen et al. 2024, Chen et al. 

2025a, Pandey et al. 2025, Dong et al. 2025, Yue et al. 2025a, Yue et al. 2025b). The content of 

these papers is presented in the subsection on simulation generation, as they also involve the 

generation of the simulation setup. 

 

Simulation Generation 
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Mattia A. Ciampa

Product Development 

Senior Manager

Accenture

In the context of product development, Digital Twin models have become essential to
meeting performance targets within realistic time and cost. However, their effective
use often depends on specialized expertise concentrated in a few experts, creating a
barrier to scaling the full potential of Virtual Product Development.

To address this, an Agentic AI approach was introduced, leveraging state-of-the-art
LLMs integrated with a commercial Finite Element solver. The agents manage pre-
and post-processing through Python APIs and coordinate High Performance
Computing resources to execute simulations more efficiently. By automating these
complex tasks, the system lowers the expertise required to interact with Digital Twin
software, allowing engineers to dedicate more effort to product value creation
instead of tool-specific activities.

The outcome was a significant improvement in efficiency, speed, and accessibility,
enabling engineers with limited simulation experience to contribute effectively. A key
insight from this initiative was the importance of coupling Agentic AI with robust
simulation infrastructures and scalable data pipelines. Only within such an
ecosystem can AI agents provide consistent, reliable, and valuable support.
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Recent research demonstrates the increasing autonomy of multi-agent GenAI frameworks for 

automating simulation workflows, particularly in CFD simulations. These systems translate 

natural language inputs into executable simulation setups and optimize simulations 

parameters, reducing the need for expert intervention. 

Chen et al. (2024) and Dong et al. (2025) both present multi-agent systems capable of end-to-

end CFD simulation based solely on natural language. While Chen et al. (2024) present 

MetaOpenFOAM, a system that employs a RAG approach using CFD tutorials, NL2FOAM by 

Dong et al. (2025) replaces RAG with fine-tuning on 28,000+ simulation configurations, 

enabling more robust domain-specific code generation without external lookups. Both 

frameworks include agents for requirement interpretation, input file generation, simulation 

execution, and error handling. Chen et al. (2025a) expand MetaOpenFOAM by 

OptMetaOpenFOAM, which integrates automated sensitivity analysis and parameter 

optimization, raising the autonomy and accessibility of simulation optimization for non-experts. 

Similarly, Pandey et al. (2025) and Yue et al. (2025a) propose multi-agent frameworks that 

leverage RAG databases to embed domain-specific knowledge from prior setups. These 

systems refine the roles of agents to include requirement parsing, configuration generation, 

and iterative correction through error analysis, demonstrating enhanced simulation validity and 

modeling accuracy. In another publication, the authors automate the approach and extend, 

among other things, the tool interoperability capabilities of the multi-agent system using MCP 

(Yue et al. 2025b). Feng et al. (2025) introduce another multi-agent framework that transforms 

natural language queries into fully automated, reproducible CFD simulations with rigorous 

reliability standards, demonstrating accessibility and precision across diverse flow problems. 

The framework consists of different agents, which are responsible for pre-processing, prompt 

generation, simulation execution and post-processing. Due to the increasing popularity of 

GenAI and agentic AI in CFD simulations, benchmark suites for evaluating the performance of 

LLMs in CFD workflows have recently been published (Somasekharan et al. 2025).  

Beyond CFD, Hou et al. (2025a) explore FEA simulation generation using a GNN to retrieve and 

adapt similar simulation code segments, enabling LLMs to generate valid FEA input files. In the 

field of multibody dynamics, Möltner et al. (2025) show the feasibility of LLM-based simulation 

generation and evaluation, despite limitations in parameter interpretation. 

The highly advanced applications in the field of simulations demonstrate the value that GenAI 

can offer in this domain. However, several challenges still need to be addressed. 

• Limited generalization: While surrogate models have demonstrated promising results, 

their performance often declines when applied to unseen scenarios or highly nonlinear, 

multi-physics problems. Even PINNs struggle to maintain accuracy when domain 

knowledge is incomplete or difficult to encode, raising concerns about the robustness 

and physical plausibility of AI-generated simulation outputs (Herrmann & 

Kollmannsberger 2024; Sunil & Sills 2024). 

• Insufficient data availability: Many simulation tasks, particularly outside well-

researched domains like CFD, lack large, annotated datasets required to train reliable AI 

models. Although fine-tuning on task-specific configurations, as demonstrated by Dong 

et al. (2025), offers a solution, the general applicability of such approaches is limited by 

the cost and effort of curating domain-specific training data at scale. 

• Trust and Interpretability: Despite advances in automation and multi-agent 

orchestration (e.g. Chen et al. 2024; Yue et al. 2025a), GenAI frameworks for simulation 

are often not seamlessly integrated into standard CAE toolchains. Furthermore, the lack 

of interpretability (Herrmann & Kollmannsberger 2024), transparent error handling, and 



57 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.  

self-validation capabilities hinders user trust, especially in safety-critical or regulatory 

contexts, where engineers must retain oversight and accountability for simulation 

outcomes (Möltner et al. 2025). 

The maturity level of simulation applications in the literature can already be considered high 

and, by overcoming the identified challenges, can potentially even be elevated according to 

the automation levels shown in Figure 20. 

 

Figure 20: Vertical automation levels in AI-based simulation applications  
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System Testing 

System testing is a critical phase in product development, encompassing both software and 

hardware verification to ensure functional correctness, reliability, and performance under real-

world conditions. In practice, this involves complex and often time-consuming tasks such as 

generating test cases, executing tests across diverse configurations, analyzing large volumes 

of output data, and diagnosing the root causes of observed failures. 

GenAI and related AI technologies are beginning to reshape system testing by automating these 

traditionally manual tasks, improving test coverage, accelerating feedback cycles, and 

uncovering system-level issues earlier in the development process. For software testing, GenAI 

models can interpret requirements or source code to automatically generate test cases, identify 

logic flaws, and assist in debugging by tracing error propagation or suggesting fixes (Wang et 

al. 2024a). In hardware-in-the-loop (HIL) or test rig environments, AI supports real-time signal 

analysis, anomaly detection, and pattern recognition, reducing the engineering effort required 

to interpret high-frequency, high-volume sensor data. 

According to recent developments, the application of GenAI in system testing can be broadly 

categorized into three major task domains: 

• Test Generation, where AI algorithms generate and optimize test cases from 

requirements, specifications, or source code 

• Test Debugging, in which GenAI supports fault localization, failure prediction, and 

code-level issue resolution 

• Test Data Analysis, especially in hardware testing, where GenAI enables intelligent 

processing of sensor data, identification of failure patterns, and extraction of insights 

from large-scale test logs or rig outputs. 

Test Generation 

Test case automation plays a pivotal role in increasing the efficiency, coverage, and consistency 

of system testing, particularly in complex software systems. Traditionally reliant on manually 

written test cases, recent advances in GenAI have introduced new ways to automatically 

generate, select, and optimize test cases based on natural language requirements, source 

code, or behavioural properties. These techniques not only reduce engineering effort but also 

improve test relevance, coverage and adaptivity in evolving development environments. 

Recent research highlights the increasing potential of GenAI to automate and enhance test case 

generation across software and cyber-physical systems. Birchler et al. (2023) propose a 

machine learning-based method to selectively skip test cases unlikely to uncover faults in self-

driving vehicle software, significantly improving the cost-efficiency of large-scale test 

campaigns. Etemadi et al. (2025) introduce CHECKPROP, a novel LLM-based approach for 

generating property-based tests that verify system behaviour over a wide range of inputs, 

supporting both design-time verification and runtime monitoring in cyber-physical 

environments. A growing trend is the integration of GenAI-driven testing with broader 

development workflows. Huang et al. (2023) present a multi-agent architecture where test case 

generation, execution, and feedback are coupled with automated code refinement through a 

programmer agent. This aligns with findings from Jin et al. (2024), who observe a shift toward 

LLM-based agents that interconnect test case creation, debugging, and software improvement, 

paving the way for more autonomous, adaptive testing systems. Amyan et al. (2024) present an 
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NLP-driven approach using BERT and Word2Vec that automatically derives and executes fault 

injection test cases from functional safety requirements on HIL platforms, achieving over 91% 

accuracy and significantly improving the efficiency of ISO 26262–compliant automotive safety 

validation. An LLM-based method to automatically generate PLC test cases from function block 

code is proposed by Koziolek et al. (2024), showing that it is fast and effective for low-to-

medium complexity programs. Wynn-Williams et al. (2025) demonstrate that LLMs can translate 

informal automotive test specifications into executable test scripts with reasonable accuracy, 

while emphasizing the importance of prompt design, model choice, and retrieval mechanisms 

for industrial applicability. Milchevski et al. (2025) propose an AI-powered assistant that 

leverages LLMs and structured intermediate representations to generate system-level test 

specifications, reducing development effort by 30–40% and improving accuracy and reliability 

in safety-critical domains. Ye et al. (2025) introduce UVM2, an LLM-powered verification 

framework that automates UVM testbench generation and refinement, achieving up to 38× 

faster setup and outperforming state-of-the-art solutions in code and function coverage for 

industrial-scale hardware designs.  

 

Test Debugging 

GenAI is increasingly being applied to streamline debugging workflows by detecting software 

defects, suggesting fixes, and improving the overall interaction between developers and 

automated tools. These AI-assisted debugging approaches aim to reduce the time and effort 

required to identify and resolve issues, while also enhancing developer trust and transparency. 

Wang et al. (2025a) introduce Copilot for Testing, an integrated debugging and testing system 

embedded directly within the software development environment. It continuously monitors 

codebase changes to detect bugs, generate relevant test cases, and propose fix suggestions in 

real time. This tight integration accelerates the feedback loop between coding and testing, 

enabling faster, more iterative development cycles. Focusing on developer interaction, Kang et 

al. (2025) propose an LLM-based debugging framework that not only identifies and resolves 

code issues but also explains its reasoning process to developers. This added transparency 

fosters greater trust in AI-driven debugging and improves user acceptance in professional 

development environments. To support rigorous evaluation of such systems, Tian et al. (2024) 

present a benchmarking framework for LLM-based debugging tools, offering standardized 
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In the context of embedded software development, the need to accelerate the Test &
Validation phase has become increasingly critical. Traditionally, test automation
required frequent manual updates whenever software requirements changed, leading
to delays and inconsistencies.

To address this, an Agentic AI approach was introduced, leveraging state-of-the-art
LLMs and Retrieval-Augmented Generation. This setup enabled the automated
generation of test cases directly from evolving requirements and validation results.
Implemented via a generative AI platform with agentic workflows, the system
continuously adapts test automation scripts, ensuring alignment with the latest
development inputs. The result was a noticeable increase in efficiency and quality,
even though formal metrics were not captured.

A key insight from this initiative was the importance of integrating Agentic AI with a
robust knowledge graph or RAG system. This combination proved effective only when
deployed within a broader GenAI infrastructure, where agents and humans
collaboratively maintain and update data. This ensures the AI can deliver meaningful
and reliable automation support throughout the V-Model development cycle.
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scenarios and metrics to assess the effectiveness and reliability of AI-generated fixes and 

diagnostics. Yao et al. (2024) propose HDLdebugger, a RAG-based and fine-tuned LLM 

framework that automates debugging of Hardware Description Language code, outperforming 

13 baselines and achieving up to 81.93% pass-rate in chip design tasks.  

Test Data Analysis 

Compared to software testing, hardware testing for complex mechatronic systems presents 

greater challenges due to its iterative nature and the layered integration of model-in-the-loop, 

software-in-the-loop, and HIL simulations (Sadri-Moshkenani et al. 2022). The heterogeneity and 

physical dependencies of these processes make it difficult to apply systematic AI testing 

strategies. As a result, GenAI applications in this context focus primarily on analyzing sensor 

signals and test data collected from physical test rigs. 

Chen et al. (2025b) introduce FaultGPT, a system that leverages GenAI to generate automated 

fault diagnosis reports directly from vibration signals, offering fast and interpretable feedback 

in hardware testing environments. Similarly, Alsaif et al. (2024) present a multimodal LLM fine-

tuned for fault detection and diagnosis in Industry 4.0 scenarios. Their approach processes 

diverse data types, such as images, audio, vibration signals, video, and text, to provide 

comprehensive diagnostics and actionable guidance to test engineers. Compared to 

conventional ML techniques, these multimodal models can dynamically support users 

throughout the testing process. Abboush et al. (2024) propose a novel framework that uses 

automated fault injection and HIL simulation to generate high-quality, representative real-time 

datasets for AI–assisted validation of automotive software systems. In another publication, the 

authors propose an ML-assisted failure analysis approach that employs LSTM models to 

automatically detect and classify known and unknown faults for the real-time validation of 

automotive software systems (Abboush et al. 2025). Additionally, Auer et al. (2025) propose 

generalizable time-series models for anomaly detection and forecasting that can be applied out 

of the box without fine-tuning. These models offer scalable solutions for real-time signal 

analysis across different hardware setups and use cases. Presentedj developments highlight 

how AI enhances data interpretation and decision-making in HIL testing by transforming 

complex sensor data into valuable diagnostic insights and recommendations. 

Further publications deal with LLM-assisted log parsing of diverse HiL documents. For example, 

Xiao et al. (2024) propose LogBatcher, a training-free LLM-based log parser that clusters and 

batches logs to reduce overhead, achieving efficient and cost-effective log parsing across 

diverse datasets. Similar approaches called LogParser-LLM and LLMParser are presented by 

Zhong et al. (2024) and Ma et al. (2024b), respectively. An extensive survey on the use of LLMs 

for event log analysis is provided by Akhtar et al. (2025).  

The highly repetitive nature of testing tasks offers significant potential for automation, although 

several challenges still need to be overcome:  

• Limited test diversity and low coverage: Generating diverse and comprehensive test 

inputs remains a challenge for LLMs, as they often struggle to explore the full behavioral 

space of the software under test. Despite strategies like mutation testing and fuzzing, 

current approaches still result in low line and branch coverage, limiting the 

effectiveness of automated testing (Wang et al. 2024a).  

• Challenges in real-world application: Applying LLMs in industrial software testing 

faces practical barriers, including concerns about data privacy, limited computational 

resources, and the need for organization-specific fine-tuning. Many companies opt for 
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open-source models, which often underperform without high-quality, domain-specific 

training data, which poses a significant hurdle for widespread adoption in production 

environments (Wang et al. 2024a).  

• Complexity and heterogeneity of hardware testing workflows: Hardware testing, 

especially in mechatronic systems, involves layered approaches such as model-in-the-

loop, software-in-the-loop, and HIL testing (Sadri-Moshkenani et al. 2022). The diversity 

of hardware setups, sensor configurations, and test environments makes it difficult to 

standardize GenAI applications, limiting scalability and requiring extensive adaptation 

for each use case.  

Figure 21 shows the different automation levels in GenAI-based system testing applications. 

 

Figure 21: Vertical automation levels in AI-based system testing applications 
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Release Management 

As product complexity grows, particularly in regulated industries such as automotive, 

aerospace, and medical technology, release management has become a critical pillar of 

product development. It encompasses not only the coordination of software and hardware 

release cycles but also the generation of technical documentation and the assurance of 

regulatory compliance. These tasks are typically labour-intensive, repetitive, and involve 

navigating large volumes of heterogeneous data across version histories, change requests, test 

cases, requirements, and configurations. 

AI is now being explored as transformative tool to streamline release workflows. AI algorithms 

can automatically extract, summarize, and synthesize relevant information from technical 

artifacts to generate documentation, traceability records and compliance reports. By 

embedding domain-specific language models into development pipelines, organizations can 

monitor compliance more continuously and reduce the manual overhead of maintaining up-to-

date regulatory records. AI systems can also intelligently link distributed and unstructured data 

to derive insights, generate impact analyses, and trace the evolution of functionality across 

releases. 

AI applications in release management can be broadly categorized into three major task 

domains: 

• Documentation Generation, where GenAI is used to generate user manuals, 

maintenance guides, or product documentation from various inputs such as source 

code, change logs, and configuration files. 

• Compliance Monitoring, where AI systems assist in monitoring, extracting, and 

structuring compliance-related information to support audits and reduce the risk of 

non-conformity. 

• Release Note Creation, where GenAI generates clear and consistent release notes by 

synthesizing information from change requests, commit messages, test results, and 

requirements, helping to ensure traceability and improve communication across 

stakeholders and product versions. 

Documentation Generation 

Product documentation, such as user manuals, maintenance guides, API references, and safety 

instructions, is essential for ensuring usability, maintainability, and regulatory compliance. 

Traditionally, documentation is created manually by technical writers or engineers, a process 

that is often disconnected from fast-paced development cycles. As product complexity 

increases and regulations evolve, the need for up-to-date, traceable, and standardized 

documentation translated into different languages has become more pressing. AI offers a 

promising solution by automatically generating technical documentation from structured and 

semi-structured data sources such as requirements, source code, system configurations, 

change logs, and design specifications. This not only reduces manual effort but also enables 

near real-time updates to documentation as the underlying product evolves due to 

continuously applying product changes. 

Sovrano et al. (2025) demonstrate the use of LLMs for generating software-related technical 

documentation that complies with the European AI Act. Their approach focuses on aligning AI-

generated documentation with regulatory requirements by interpreting legal constraints and 
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translating them into structured descriptions of system behaviour, data usage, and risk 

management. This work highlights the potential of GenAI to bridge the gap between legal 

compliance and technical clarity, particularly in regulated domains where documentation must 

serve both engineering and auditing purposes. Tao et al. (2024) propose LLM-R, a framework 

for the generation of maintenance schemes based on hierarchical agents and RAG, which is 

intended to enhance the equipment operation efficiency in different industries, such as 

aviation, energy and transportation. Shi et al. (2025) present a method based on KGs, RAG and 

Chain-of-thought prompt engineering for the generation of accurate, structured maintenance 

guidance documents. They demonstrate that they significantly improve content precision and 

structural controllability compared to prompt-only approaches. Khoee et al. (2024) introduce 

GoNoGo, an LLM-based multi-agent system that streamlines automotive software release 

decisions by automating data analysis and supporting risk-sensitive deployment choices, 

thereby reducing manual intervention and accelerating release processes. 

 

Compliance Monitoring 

Ensuring compliance with industry-specific regulations and legal frameworks is a central aspect 

of product release management. Compliance tasks often involve interpreting complex legal 

texts, mapping requirements to technical artifacts, and generating documentation for internal 

reviews or external audits. Traditionally handled through manual processes, compliance checks 

are time-consuming, prone to oversight, and difficult to scale as products and regulations 

evolve. 

Hassani (2024) presents an LLM-supported framework for regulatory analysis that assists 

engineers and legal experts in identifying relevant legal clauses and aligning them with product 

documentation. Using RAG-techniques, the system enables semi-automated compliance 

reporting by highlighting potential gaps without replacing human judgement. This supports 

compliance-by-design approaches while reducing manual effort in interpreting regulatory 

texts. Han et al. (2025) propose a modular RAG-based system that automatically determines the 

applicability of medical device standards across jurisdictions, achieving interpretable, 

traceable justifications and significantly improving compliance reasoning compared to 
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Agentic AI is redefining the landscape of technical publications by automating repetitive
authoring tasks, accelerating content delivery by up to 30%, and reducing manual effort
to achieve ~20% cost savings. Beyond efficiency, validation agents significantly improve
accuracy by ensuring compliance with regulatory standards and minimizing human
error. Multi-agent systems also enable seamless collaboration across authoring
disciplines - writing, editing, illustration, and program management - creating more
consistent and integrated outputs.

The technical foundation relies on a modular agent architecture that scales across
diverse products and geographies. Generative agents powered by LLMs handle content
drafting and refinement. Retrieval agents integrate vector databases with hybrid keyword
and semantic filters to ground content in authoritative sources. Validation agents
leverage NLP models and rule-based engines to automate compliance checks, while
personalization agents use embeddings and recommendation models to adapt
documentation to specific user contexts. These agents are orchestrated via event-driven
workflows, with APIs connecting them to product data repositories, compliance
systems, and feedback loops. A shared memory layer spanning short-term context and
long-term knowledge can ensure continuity and adaptability across the authoring
process.

As adoption matures, Agentic AI will evolve into self-optimizing systems, fostering
innovation, accountability, and higher-value technical publications.

Industry Insights into Technical Documentation
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retrieval-only or rule-based approaches. Arora et al. (2024b) introduce CompliAT, a framework 

that leverages LLMs to ensure terminology consistency, classify assistive technology products, 

and trace specifications to regulatory requirements, thereby improving compliance, 

accessibility, and safety in release management and technical documentation. Madireddy et al. 

(2025) develop an LLM-driven framework that semi-automates building code compliance 

checking by translating regulatory requirements into executable scripts, thereby reducing 

manual effort and improving both accuracy and efficiency in regulatory verification for 

construction projects. 

Release Note Creation 

Release notes play a critical role in communicating changes, improvements, and known issues 

to stakeholders at each product version milestone. Traditionally compiled by release managers, 

this task requires the aggregation of inputs from multiple sources, including test reports, issue 

trackers, and version control systems, making it highly dependent on manual expertise. GenAI 

presents a promising solution to streamline and automate this process. By synthesizing product 

data from across the development pipeline, LLMs can generate coherent, audience-tailored 

release notes that improve traceability and decision-making. 

Daneshyan et al. (2025) demonstrate an LLM-based pipeline for automated release note 

creation tailored to project-specific domains, significantly reducing manual workload and 

ensuring consistency across versions. Similarly, Wu et al. (2024b) introduce a co-pilot system 

that assists release managers not only by summarizing technical artifacts, such as test 

outcomes, defect statistics, and code quality metrics, but also by answering strategic queries 

like “Are we ready to release?” or “What are the open risks?”. In support of the documentation 

quality, Kumar et al. (2024) propose using LLMs to evaluate the clarity and completeness of bug 

reports and software artifacts, further enabling high-quality, automatically generated release 

documentation. 

GenAI applications in release management offer huge potential, but key challenges remain 

critical:  

• Fragmented and unstructured data sources: Release documentation and compliance 

reports must synthesize information from diverse sources across all disciplines of the V-

model such as change logs, test reports, code repositories and requirement databases. 

The lack of standardized formats and semantic consistency across these artifacts 

complicates automated data extraction and summarization by GenAI systems. 

• Context-aware documentation generation: Automatically generating accurate and 

audience-specific release notes or compliance reports requires a deep understanding 

of the domain, product context, and stakeholder needs. While AI models can generate 

fluent text, maintaining factual correctness, traceability, and relevance to regulatory 

standards remains a key challenge. Providing product- and company specific context to 

the algorithms is a key challenge for GenAI applications in release management but can 

be tackled through the application of RAG and KGs. 

• Limited trust and validation mechanisms: GenAI-generated outputs, such as release 

summaries or compliance insights, require validation for correctness and 

completeness. However, robust quality assessment frameworks for AI-generated 

documentation are still underdeveloped, posing risks to trust and adoption in high-

stakes industrial release processes, such that manual involvement is still highly required 

for critical release and compliance documentations. 
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Figure 22 provides an overview of the automation levels in AI-based release management 

applications. 

 

Figure 22: Automation levels in GenAI-based release management applications 
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Cross-Domain Applications 

While many AI applications in engineering focus on a single engineering domain and discipline, 

an increasing share of publications exploit the interconnections between domains. Modern 

engineering processes are inherently cross-functional, with artifacts such as requirements, 

architecture models, source code, CAD design, test cases, test logs, and release 

documentation continuously influencing one another. This creates opportunities for AI systems 

to add value by integrating heterogeneous data sources, ensuring consistency across domains 

and artifacts, and enabling knowledge transfer beyond domain and disciplinary boundaries. 

Such cross-domain applications are especially powerful where engineering complexity, 

regulatory pressure, and the demand for rapid product cycles converge. By bridging silos, AI 

does not only enhance efficiency but also reduces errors and strengthens compliance in 

scenarios where manual synchronization would be error-prone and resource-intensive. 

Cross-domain applications can be categorized into 

• Change & Configuration Management, where AI supports the analysis of change 

requests, configuration baselines, and related artifacts across domains to ensure 

consistency, assess impacts, and improve traceability throughout the product lifecycle. 

• Portfolio & Variant Management, where AI enables the analysis and optimization of 

complex product portfolios and variant structures by identifying redundancies, 

predicting market and cost impacts of portfolio decisions, and supporting automated 

variant derivation and configuration based on technical and business constraints. 

• Program & Project Management, where AI assists in planning, monitoring, and 

controlling engineering programs by predicting schedule deviations, cost overruns, and 

resource conflicts, while also automating reporting and decision support through 

intelligent analysis of project data and dependencies. 

• Cross-Domain Multi-Agent Applications, where multi-agent systems carry out cross-

domain development tasks autonomously, modify artifacts, implement changes, and 

automate cross-domain engineering processes. 

• Cross-Domain Context Management, where AI extracts and links knowledge from 

heterogeneous engineering domains and stores it in vector (RAG) or graph databases 

(KG) to enable efficient retrieval and reasoning for downstream AI applications. 

Configuration and Change Management 

AI can significantly enhance configuration and change management processes by enabling 

faster identification of dependencies, predicting potential impacts, and supporting decision-

making in complex development environments. AI-based methods have already been widely 

deployed within software impact analysis (Samhan et al. 2024) and show strong potential to 

support the efficient development of complex physical products as well (Burggräf et al. 2024). 

This helps companies reduce risks, improve consistency, and accelerate change 

implementation. 

In automotive software development, El Asad et al. (2025) propose a RAG-assisted LLM concept, 

that predicts impacts caused by software updates in vehicle manufacturing and enables earlier 

detection of risks that might otherwise appear only at later stages. Treshcheva et al. (2025) 

create traceability links between requirements and test scripts, which are essential for 

performing change management activities such as impact analysis. Zhang et al. (2025e) 

introduce MBSE 2.0, a next-generation systems engineering framework that integrates AI, 

model governance, and cross-domain collaboration to overcome the limitations of traditional 

MBSE. The authors state that AI enhances enterprise change management by moving beyond 
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static, manually defined traceability toward intelligent association, where technologies like KGs 

and LLMs automatically infer and update relationships between requirements, architectures, 

and simulations. 

 

Portfolio & Variant Management 

Managing product portfolios and variants, as well as selecting R&D projects, presents 

significant complexity for companies, requiring advanced methods to ensure efficiency and 

strategic alignment. AI-driven analytics can help identify market trends, optimize resource 

allocation, and evaluate trade-offs between cost, risk, and innovation potential. By leveraging 

predictive modeling and scenario-based simulations, organizations can make more informed, 

data-driven decisions that enhance competitiveness and reduce time-to-market. 

Mehlstäubl et al. (2022) address the challenge of predicting product attribute values for multi-

variant product portfolios, where companies offer an almost infinite number of product variants 

and attribute values must be determined even for previously unbuilt configurations. Their 

methodical approach utilizes ML to predict product attributes based on customer feature 

configurations, demonstrating that ML reduces effort and provides more accurate and faster 

predictions compared to traditional rule-based expert systems. Nielsen et al. (2024) focus on 

the strategic selection of industrial R&D projects, a complex task influenced by innovation 

unpredictability, competition, and technological changes. They propose a multi-objective 

optimization program as a conceptual quantitative framework to systematically analyze R&D 

projects and optimize corporate objectives by considering project values and risks in a multi-

project context. A case study in the renewable energy sector demonstrates how this framework 

provides optimal trade-offs between portfolio value and risk, enhancing transparency in 

decision-making. 

Program & Project Management 

Managing programs and projects in the R&D of complex mechatronic systems places high 

demands on planning accuracy, cross-domain coordination, and risk management. AI 

applications can support this process by providing predictive insights into project schedules, 

resource utilization, and potential bottlenecks across mechanical, electrical/electronic, and 

software development streams. Through advanced analytics and intelligent decision support 
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Managing product configurations and technical changes has become increasingly
complex. Every modification must be evaluated against a large set of
interdependent requirements, design elements, test results, and sourcing
constraints.

Traditionally, engineers spend substantial time searching across disconnected
systems and documents to trace the impact of a change, often leading to delays or
incomplete assessments. Artificial Intelligence offers a new approach by combining
Knowledge Graphs with Large Language Models (LLM). Combined, they create a
structured map of product data, linking information from heterogeneous sources
into a consistent and navigable network.

On top of this, LLMs can retrieve and interpret the relevant context, guiding
engineers quickly to the connections that matter most. This makes it possible to
understand the implications of an Engineering Change Request in minutes rather
than days, while maintaining end-to-end traceability. The benefits are more reliable
decisions, greater transparency in change processes, and improved collaboration
between disciplines throughout the product lifecycle. These concepts provide a
promising path to finally connecting information silos and realizing true end-to-end,
collaborative engineering.
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systems, organizations can enhance transparency, mitigate risks early, and improve overall 

program efficiency and delivery reliability. 

Geyer et al. (2025) present an industry case study investigating the role of LLMs in evaluating 

the quality of epics, which are critical artifacts for communicating software requirements in 

agile software development. Their user study with product managers indicated high levels of 

satisfaction, suggesting that LLM evaluations are a viable application for improving epic quality 

and consistency, while also outlining challenges such as the need for flexibility and domain 

knowledge. Kumar et al. (2025) introduce a "synthetic teammate" framework to strategically 

integrate GenAI into product development activities, aiming to enrich and accelerate the overall 

process. This approach advocates a "human-first" methodology, positioning GenAI as a 

managed team member that enhances human thinking across problem and customer 

identification, ideation, concept development, and commercialization, with humans retaining 

ultimate control and decision-making responsibility. 

Cross-Domain Multi-Agent Applications 

A key enabler of cross-domain AI applications in engineering is process automation driven by 

multi-agent systems. Unlike traditional automation approaches confined to single tools or 

domains, multi-agent systems provide a distributed intelligence layer that can coordinate and 

execute modifications across heterogeneous engineering environments. Each agent can 

specialize for a specific task while collectively working toward a common engineering 

objective. By communicating and negotiating with one another, these agents enable consistent 

propagation of changes, ensure alignment of artifacts across domains, and reduce the manual 

effort typically required to synchronize complex toolchains. 

Wang et al. (2025b) present a multi-agent framework for autonomous mechatronics design 

including four agents being responsible for mechanical, electronic, control and software 

engineering, respectively. Validated through the development of an autonomous water-quality 

monitoring vessel, their agentic framework demonstrates how cross-disciplinary agents 

combined with structured human feedback can lower expertise barriers and enable scalable, 

real-world engineering innovation. A similar approach is performed by Elrefaie et al. (2025), who 

choose a multi-agent framework consisting of CAD, styling, simulation and meshing agent to 

generate 2D automotive concepts, transform it into a 3D CAD model and run aerodynamic 

simulations for generated 3D models. Orchestration between agents can accelerate the 

iterative design process while satisfying industry-standard engineering constraints. Jin et al. 

(2025) propose a two-stage multi-agent framework that integrates generative design agents 

with a surrogate-based drag prediction agent, enabling the automated transformation of 

ambiguous requirements into validated 3D automotive concepts while balancing aesthetics 

and aerodynamic performance. Ocker et al. (2025) introduce a vision language model based 

multi-agent architecture for CAD that mirrors industrial development teams by combining 

requirements engineering, CAD code generation, and vision-based quality assurance, enabling 

iterative, user-in-the-loop creation of parametric models from sketches or textual descriptions. 

Ni et al. (2025b) present CADDesigner, an LLM-powered agent that generates high-quality CAD 

modeling code from textual requirement descriptions and sketches using a novel context-

independent imperative paradigm, enhanced by iterative visual feedback and a knowledge 

base for continuous improvement. 

Recent research published in 2025 shows a clear shift toward cross-domain multi-agent 

applications in engineering and design. Multi-agent systems are increasingly being used to 

connect tasks such as requirements analysis, design generation, simulation, and validation 

across different domains. This trend highlights a growing focus on orchestrated, collaborative 

AI agents, and it is expected that the field will gain strong traction in the coming years. 
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Context Management 

Cross-domain context management in engineering has gained increasing importance as 

product development processes continue to grow in complexity. With rising system integration, 

the need for centralized context management, data interconnectivity, and the systematic 

identification of cause-effect relationships has become even more critical. In practice, 

knowledge about impact chains and interdependencies between domains and disciplines is 

scattered across distributed development teams. Consequently, alignment to the impact of 

changes is often time-consuming and significantly slows down the overall product 

development process. 

Recently, advances in AI research have introduced methods that address these challenges (see 

also Section 04 Context Management). Techniques such as RAG and KGs allow for scalable and 

automatable knowledge extraction and retrieval, thus enabling cross-domain and cross-

disciplinary context management. These methods connect information and artifacts from 

different domains, providing engineers with faster access to relevant insights and improving 

decision-making in complex development environments. The publications discussed in the 

following passage illustrate how such approaches leverage AI-driven methods to interlink 

heterogeneous development artifacts, ultimately accelerating knowledge access across 

domain boundaries. 

Tong et al. (2024) propose a knowledge recommendation framework for PLM data based on KG 

and GNN. Their approach provides PLM users with accurate, context-aware knowledge access 

across product domains and product views (conceptual, design, manufacturing, purchasing, 

sales, aftermarket) improving efficiency in design and data modeling. Kasper et al. (2024) 

introduces a graph-based data model of the digital thread that interconnects product lifecycle 

phases, data models, processes, and IT systems. The authors focus on the define, design, 

produce, and operate phases, demonstrating that graph databases offer superior performance 

for recursive operations on networked data compared to relational approaches, and highlight 

future research needs in integrating dynamic processes such as quality and change 

management. Ryś et al. (2024) propose a framework based on KGs and ontologies that captures 

workflow concepts, modeling artefacts, and their interrelations, providing the foundation for 

establishing traceability across artifacts as well as enabling knowledge retrieval and reuse. The 

authors validate their approach using both a simple spring–mass–damper example and a real-

world engineering scenario involving a drivetrain smart sensor system, demonstrating its 

applicability and benefits such as improved artifact management, reduced information retrieval 

time, and enhanced cross-domain reasoning. Darm et al. (2025) propose an LLM-based 

approach for the automated verification of requirement fulfillment. In their study, requirements 

are represented as graph structures, and an LLM is employed to reason over these graphs. Using 

two early-stage Capella SysML models of space missions with associated requirements as 

examples, the model can determine whether specific requirements are satisfied by analyzing 

the structural and relational information encoded in the graphs. A cognitive digital thread tool 

chain to improve model versioning in MBSE is presented by Wu et al. (2025). The tool chain 

supports conflict detection and resolution across diverse modelling languages and KGs 

generated during versioning provide reasoning capabilities that enhance traceability and 

decision support. The approach is validated using the example of a landing gear system, 

demonstrating higher efficiency than conventional model versioning.  

Jiang et al. (2025) present a two-stage RAG framework that integrates design principles and 

sustainability strategies to provide contextually relevant, early-stage guidance for sustainable 

product development, significantly improving design outcomes and supporting the transition 

to a circular economy. Xiong et al. (2025) propose Domain-Rule-based RAG, a framework that 

combines domain-specific KGs, rule-based reasoning, and digital twin technology to enhance 

knowledge-driven aircraft design. By dynamically constructing KGs with a hybrid R2D-LLM 
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approach and integrating rule-based retrieval into a RAG pipeline, DR-RAG improves retrieval 

accuracy, decision transparency, and design efficiency in complex engineering contexts.  

Recent advances such as RAG, KGs and GraphRAG show significant potential for automating 

context management and enabling the realization of the digital thread and comprehensive, 

cross-domain traceability. First applications can already be found in literature, demonstrating 

their value for linking artifacts and improving decision-making and accelerated knowledge 

reuse in engineering. These technologies are key to connecting domains and disciplines, 

addressing one of the central challenges of modern product development. We therefore expect 

a strong increase in research efforts and integration within engineering tools in this field in the 

coming years.  
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Use Case Summary 

In the use case Section, we present a variety of AI use case classes mapped to the six core 

disciplines of the V-model in product development. These use cases highlight the broad 

applicability of GenAI and LLMs in engineering workflows and are summarized in Figure 23. 

 

Figure 23: Overview over all use cases across the V-model's development domains 
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Most identified applications focus on the generation and optimization of engineering artifacts, 

leveraging existing development outputs to synthesize new content. These generative 

approaches aim to accelerate and enhance tasks such as requirements formulation, 

architectural design, product modeling, simulation, testing, and documentation. Creation of 

traceability between development artifacts is another emerging area of research, though 

current implementations are fragmented and typically confined to individual development 

disciplines (Fuchß et al. 2025a, Hassine 2024). A holistic, cross-disciplinary traceability solution 

with development artifacts from all engineering disciplines of the V-model has not yet been 

realized. 

Technically, the use cases rely either on RAG-based knowledge systems or, in more advanced 

cases, on fine-tuned LLMs tailored to discipline-specific data. Applying LLMs in the disciplines 

captured in the upper stages of the V-model, such as requirements engineering, architecture 

design, testing, and release documentation, is generally more straightforward. This is because 

the artifacts in these disciplines are primarily text- or code-based, making them well-suited to 

the strengths of current LLM technologies. In contrast, LLM applications in the lower sections, 

especially in the design and simulation of physical components (e.g., CAD, FEM, CFD), face 

significantly higher complexity. These domains require the generation of high-resolution, 

physically plausible 3D data, which remains a considerable challenge for current generative AI 

models. However, a noteworthy trend is the movement toward the compilability of design (see 

CADQuery 2024 and Guan et al. 2025) and simulation models (see Pandey et al. 2025 and Yue 

et al. 2025a), aiming to make these artifacts more accessible to LLM-driven synthesis, 

optimization and generation. 

 

Figure 24: Results from the evaluation of 137 scientific AI publications in engineering with respect to their 
vertical and horizontal maturity 
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In the Section Stages of AI Readiness in Engineering, we introduced the concept of vertical and 

horizontal AI integration. Figure 24 shows an evaluation of all 137 publications analyzed in the 

Use Case Section in terms of vertical and horizontal maturity according to the definitions 

proposed in Figure 15. 129 of the 137 publications have a higher vertical than horizontal maturity 

level, meaning that their focus is more on solving domain-specific problems than on creating 

cross-domain links between tools and data. This is a trend we also observe in the 

implementation of industrial PoCs and use cases. On the one hand, tools and data are highly 

fragmented in industrial practice, on the other hand, they are typically managed by 

organizational units that operate within separate areas of responsibility. This means that the AI 

use case landscape is also oriented toward the fragmentation of tools and data and hierarchical 

organizational structures. As a result, many AI use cases are being implemented, which 

ultimately lead to incremental accelerations of domain-specific sub-processes in product 

development, but do not sufficiently exploit the overarching potential for accelerating overall 

product development through the implementation of horizontal AI use cases. The realization of 

the target vision of a digital thread in product development has been discussed for several 

decades and is considered desirable. With the advent of GenAI and Agentic AI, the incentives 

for realizing the digital thread are now amplified, as massive reductions in product development 

cycles are made possible by horizontal AI-fication of engineering. 

It is also noteworthy that the current development of GenAI use cases remains largely intra-

disciplinary, with efforts primarily concentrated on advancements within distinct engineering 

fields. Yet, as engineering processes become more connected, the potential for cross-

disciplinary use cases across mechanical, E/E and software development will grow. Promising 

future applications include change and configuration management, cross-domain context 

management, and integrations with supplier and customer systems (e.g. for cost estimation, 

demand forecasting and supplier selection use cases), as well as downstream value chain 

processes such as production planning, M-BOM generation, maintenance, and service. 

A closer analysis of the summed up vertical and horizontal maturity levels shown in Figure 24 

(i.e., the publications located in the upper right area of Figure 24) reveals a clear trend. The 

simulation (Yue et al. 2025b, Feng et al. 2025, Chen et al. 2025a, Chen et al. 2024), design (Wu 

et al. 2024a, Qin et al. 2024), and cross-domain use cases (Jin et al. 2025, Elrefaie et al. 2025) 

with the highest maturity levels all represent multi-agent systems that automate complex, multi-

stage development processes through task distribution, tool interoperability, and agent-based 

communication. This demonstrates that Agentic AI with its recently acquired capabilities has 

the potential to significantly increase the degree of automation in development processes. 

In the following section, we therefore provide an outlook on multi-agent systems, illustrating 

how their introduction into engineering affects various dimensions and which measures 

companies must now implement to fully and rapidly leverage these potentials. 

To conclude this chapter, we provide an overview of the AI use cases developed by Accenture 

and already implemented in industrial environments. Figure 25 summarizes the AI use cases 

developed and implemented by Accenture in the engineering sector and maps them to the 

domains of the V-model. 
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Figure 25: Integration of industrial AI use cases developed by Accenture into the V-model 
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Agentification of Engineering 

In the previous Section, we demonstrated that numerous AI use cases are already being 

employed in literature and industry, but the use case landscape remains fragmented and largely 

focused on vertical AI integrations. Recent research into GenAI and Agentic AI has massively 

expanded the portfolio of AI capabilities that have so far been not yet applied in current product 

development processes. In this Section, we therefore show how fragmented use case 

landscapes can be overcome by operationalizing these capabilities and providing engineers 

with AI solutions that ensure a holistic application in the product development process. 

As indicated in Figure 2, GenAI and Agentic AI bring new capabilities that are particularly 

important for engineering of the future. These include 

1. Planning & Reasoning: capability to answer questions that require complex, multi-step 

processes with intermediate steps, enabling systematic problem-solving beyond fast, 

heuristic responses (Li et al. 2025g, Sui et al. 2025) 

2. Orchestration: capability to automatically coordinate multiple LLM agents and tasks 

including state tracking, dependency management, independent validation, and 

compensatory rollback to ensure consistent, reliable execution across distributed 

workflows (Chang & Geng 2025) 

3. Tool Interoperability: capability to discover multiple tools, orchestrate their use, and 

reliably invoke them to enable multi-step workflows across environments (Xu et al. 

2025b) 

4. Multi-Agent Collaboration: capability to enable multiple LLM-based agents to 

coordinate and manage joint objectives through structured collaboration channels so 

that they jointly plan, exchange knowledge, and make collective decisions to achieve 

shared goals (Tran et al. 2025) 

5. Context Management: capability to preserve essential constraints, state history, 

dependencies, and reasoning justifications so agents can reliably track, recall, and use 

context across multi-step workflows, especially when failures or replanning occur 

(Chang & Geng 2025) 

6. Memory: capability to store, manage, and retrieve past information including 

conversation history, task states, and reasoning traces so that agents and multi-agent 

systems can maintain long-term context, support consistent decision-making, and 

enable continual learning across interactions (Zhang et al. 2025d) 

These capabilities have far-reaching implications for the engineering of the future. Table 2  lists 

the capabilities and describes their implications for the engineering of the future. It shows that 

multi-agent systems offer great potential for automation in product development, especially 

when end-to-end understanding of product architectures, system and process modeling, and 

access to metadata (stored in graph and vector databases) and engineering data (stored in 

individual tools and accessible using tool interoperability capabilities) are enabled. A high-level 

architecture that exploits the potential of the listed capabilities is shown in Figure 26. The 

capabilities listed in Table 2 are assigned to the system elements. 
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Table 2: Implications of GenAI and Agentic AI capabilities on engineering 

Capability Implication on engineering 

Planning & 

Reasoning 

The development of complex mechatronic products is a highly networked 
process whose complexity must be mastered through multi-stage 
decomposition and interface definitions across multiple engineering 
domains and levels. Leveraging planning and reasoning capabilities can 
support identifying dependencies and constraints, and dynamically 
generating and refining product structures, requirements, and design 
alternatives across the entire lifecycle. 

Orchestration 

High-level engineering tasks such as implementing product changes 
involve many steps that must be planned in fine detail and managed 
adaptively. Breaking down an overall task into subtasks and processing 
them sequentially while monitoring overall progress and possible 
dependencies are essential components of engineering activities. With 
orchestration capabilities, it will be possible in the future to orchestrate 
complex tasks, continuously monitor their progress, and proactively draw 
attention to risks. 

Interoperability 

Engineering toolchains from companies with complex product portfolios 
often consist of several hundred or even thousands of tools, whose 
interoperability is ensured by point-to-point integrations or by connection 
to lifecycle systems. With interoperability capabilities and agentic 
communication protocols such as MCP, data can continue to be managed 
in tools and retrieved or modified from the outside. This will ensure 
compatibility between multi-vendor toolchains and AI applications, while 
at the same time increasing the requirements for standardized data 
management. 

Multi-Agent 

Collaboration 

As engineering tasks become more complex and orchestration efforts 
increase, so does the need to deploy multiple interacting agents that work 
together to achieve an overarching goal. Hierarchical agent architectures 
consisting of an orchestrator with an end-to-end product view and 
multiple subagents that communicate bidirectionally with the 
orchestrator are ideal for this purpose. Together with planning & 
reasoning, orchestration, and tool interoperability capabilities, entire 
multi-agent systems for engineering can be designed that automate cross-
domain and cross-tool processes, with agents reacting adaptively to 
states and unplanned events. 

Context 

Management 

The provision of context is particularly important for complex product 
developments, since domain-specific processes, data and syntax play a 
crucial role. For agents to understand complex systems, architectures, 
processes, dependencies, and structures, information must be provided 
centrally and be reflected in graph databases, vector databases or process 
and system modeling. Access to this data and gaining a higher-level 
understanding of the overall system structure and processes for 
developing or modifying the system determines the degree of end-to-end. 

Memory 

Additional context that is valuable for performing engineering tasks 
comes from engineers' historical prompt histories, design rationales, and 
decision logs. By leveraging the memory capabilities of LLMs and Agentic 
AI, engineering teams can maintain long-term context across 
development tasks and cycles, ensure consistent and traceable decision-
making, and enable continual learning from previous designs and 
problem-solving episodes. This persistent, structured memory supports 
complex, multi-stage product development by reducing knowledge loss, 
accelerating iteration, and improving cross-domain collaboration. 
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Figure 26: High-level engineering AI architecture including a hierarchical multi-agent system 
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module in which data and models are made accessible to the respective agents. The 

orchestrator requires an end-to-end product view and must therefore access MBSE models and 

product data that holistically describe the entire product development process. Super agents 

provide an overview of domain-specific data products and are enriched with domain-specific 

regulations, product structures, and data architectures. The executors are directly connected 

to the tools via MCP servers and have tool-specific information in their context modules, such 

as data structures, formats, and API calls, which they can use to access and modify tool data. 

In the automated execution of cross-domain engineering tasks by multi-agent systems, it is 

essential to introduce Human-in-Control checkpoints. These are designed to review, assess, 

edit, and ultimately approve intermediate and final results produced by the multi-agent system. 

It is crucial to ensure traceability, explainability, robustness, and reliability continuously 

throughout the process. Thus, humans do not remain merely in the loop but in control. This 

approach requires that employees are proficient in working with AI, able to interpret and 

validate its results, and thus capable of monitoring compliance and technical feasibility 

throughout the entire product development process. 

Figure 27 shows a simplified example of how multi-agent systems could be embedded in 

engineering processes in the future. 

 

Figure 27: Exemplary and Simplified Multi-Agent Engineering Workflow consisting of a three-level 
Hierarchical Multi-Agent Architecture, Context Modules, and Tool Interoperability adapted from Larichev 

et al. (2025) 
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The engineer sends an abstract prompt to the orchestrator for the development of a technical 

system, whereupon the orchestrator uses the provided system context to break down the 

abstract development task and delegate it to domain-specific sub-agents. These agents further 

enrich the instructions with domain-specific context and then delegate tasks to the executor 

agents. The executor agents are connected to the appropriate tools via MCP servers, are familiar 

with the data structures and formats stored in the tools and can perform the development tasks 

in the tools via API calls. The agents not only communicate top-down, but also inform the 

corresponding higher-level agent about progress, quality, and the result of the task processing. 

Bidirectional communication between the agent layers and within one agent layer (see agentic 

communication layer) is necessary to delegate development tasks, but also to ensure 

satisfactory task completion and bidirectional information exchange. Between each information 

transfer across the agent layers, Human-in-Control checkpoints are integrated, allowing 

humans to influence task execution by providing direct feedback and issuing instructions for 

rework. Each agent has quality criteria that it checks after the subordinate agent has completed 

its task and requests rework if necessary. This enables the orchestrator to identify conflicts 

between the work results of two subordinate agents at an early stage, which in the case of 

manual product development would only have been noticed in later product development 

phases of verification and validation, leading to further cost-intensive iterations in the product 

development process.  
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The Future of Engineering 

Engineering is at a turning point. AI is not only transforming individual tools or methods but also 

reshaping the organizational elements that determine the success of complex product 

development. We use the Accenture Butterfly Model (see Figure 28) as a template to discuss 

the effects of AI on four key organizational elements: 

 

Figure 28: The Accenture Butterfly Model as a basis for assessing the impact of AI on organizational 
elements in engineering 
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3. As a result, critical design decisions can be deferred to later stages with higher product 

development maturity levels, fostering innovation and the exploration of previously 

untapped product variants (Zhang & Zhang 2025).  

Beyond engineering itself, AI will enable a higher degree of connectivity across the entire 

enterprise process landscape. Feedback loops from manufacturing, supply chain, and service 

can be directly incorporated into development, creating a Closed Loop Engineering (Demartini 

et al. 2019) paradigm. 

Data 

Data becomes a strategic asset, providing the context, consistency and accessibility required 

for intelligent workflows. Data is the fuel for the digitalization and AI enablement of complex 

product development processes. In the future, companies will only succeed in developing 

advanced mechatronic systems if they master a set of data-driven capabilities: 

1. Alignment of hierarchical data architectures with the engineering toolchain, ensuring 

that information flows seamlessly across tools and disciplines. 

2. Reduction of the number of data formats and tools while simultaneously driving the 

standardization of data and interfaces. 

3. Continuous consolidation, documentation, and cataloging of consumable and 

machine-readable data products, making them accessible for AI use cases (Jahnke & 

Otto 2023).  

4. Ensuring data compliance with regulatory requirements and defined data models, for 

example, through automated policy enforcement. 

5. Realization of MBSE and the connection of standardized data models with meta- and 

system models (Zhang et al. 2025e).  

6. Application of AI not only for horizontal and vertical use cases, but also for the 

preparation, cleansing, and enrichment of datasets themselves (Singh 2023). 

In this paradigm, data evolves from being a byproduct of engineering activities to a strategic 

enabler of AI-driven development. Organizations that successfully industrialize their data 

management practices will gain a decisive competitive advantage in the next generation of AI-

enabled product engineering. 

People 

People are at the center, as adaptability, talent development, and close collaboration between 

humans and machines are key to success (Shao et al. 2025). AI will not replace human work in 

product development but rather complement and significantly accelerate it (Brynjolfsson et al. 

2025). 

Historically, the evolution of product creation has been shaped by rising complexity. In the shift 

from craftsmanship to mass production and later to increasingly complex mechatronic systems, 

organizations attempted to master this complexity by decomposing product development into 

smaller subprocesses. As a result, engineers have transformed from generalists in early 

manufacturing into highly specialized experts with narrow but demanding areas of 

responsibility. 

AI enablement marks a turning point in this trajectory. In the future, the ability to design 

products via prompt-driven development will democratize product creation. Creative tasks will 

gain importance, while administrative and operational work will diminish. Faster realization of 

product ideas and deeper exploration of design spaces will allow engineers to develop 

unconventional product concepts to higher maturity levels and compare them with 
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conventional designs (Jiang et al. 2024). This will lead to increased innovation capacity and a 

shift in the boundaries of what is technically feasible. 

At the same time, Human-in-the-Loop and Human-in-Control will remain essential. While many 

administrative and operational activities offer potential for automation, engineers must be 

empowered to evaluate and approve plausibility, validity, reliability, safety, and compliance of 

AI-generated content. This requires training and change management on the responsible and 

reliable use of AI, ensuring explainability, and embedding human checkpoints into digitized 

workflows (Lee et al. 2025). Ultimately, accountability for faulty designs cannot be delegated to 

algorithms or agents, it will remain with organizations and individuals. 

Technology 

Technology delivers platforms, software and architectures that enable AI-driven innovation and 

embed it sustainably within the organization. Over the coming years, the very platforms and 

tools that underpin engineering will themselves be profoundly reshaped by AI enablement. 

Through the democratization of product development, user interfaces, as illustrated in Figure 

26, will be consolidated into unified platforms. Tools will increasingly be operated via prompts, 

meaning that individual tools may no longer require stand-alone user interfaces but instead 

provide their functionality through integrated services (Riche et al. 2025). As a result, the focus 

for tool vendors will shift toward delivering open and high-performance input/output interfaces 

(e.g., APIs, MCP servers) that allow access to modular and configurable data architectures. 

These criteria will become decisive factors in the evaluation and selection of tools and vendors. 

AI enablement will also transform data representations and storage. Automated generation of 

knowledge graphs and vector databases based on development data stored within platforms 

and tools will provide the contextual foundation required by agentic systems interacting 

directly with these tools. At the same time, built-in data quality monitoring systems will 

continuously oversee data structures, enforce policies, and ensure reliability, machine-

readability, and completeness. 

Together, these developments will redefine the role of technology in engineering. The tool 

landscape will evolve from a set of isolated tools into an intelligent, interconnected ecosystem 

that empowers AI-driven product development.  
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From Vision to Execution 

The previous Sections have shown which dimensions should be considered in an engineering 

AI transformation and that there is currently an imbalance between vertical and horizontal AI 

use cases. Based on these findings, hypotheses have been formulated as to the direction in 

which elements of engineering (processes, data, people, technology) will develop. Finally, this 

Subsection presents a high-level roadmap with successive steps that will transform this process 

from a vision into execution. The roadmap is divided into six steps that describe the 

transformation process from a fragmented tool and data landscape to an AI-native engineering 

toolchain, as shown in Figure 29. 

 

Figure 29: Proposed roadmap for achieving an AI-native engineering toolchain 
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organization
Stakeholder Alignment: 
Establish shared understanding 
of AI’s role
Use Case Funnel: Collect, 
structure and cluster potential 
AI use cases across V-Model

Implement High-Value AI 
Use Cases

Data Quality Mgmt.: Introduce 
quality metrics & implement 
metadata management
Architecture Implementation: 
Deploy architecture & build 
MCP servers
Context Modules: Build context 
modules (RAG & GraphRAG) for 
key domains 
Governance Activation: Roll 
out role- and rights-based 
access & continuously monitor 
governance compliance

Automate, Reason & 
Orchestrate

Agentic Architecture: 
Transform multiple domain-
specific use cases to multi-
agent systems
AI-Assisted Decisioning: 
Implement AI solutions in end-
to-end engineering processes
such as Change & Config. Mgmt.
Adaptive Workflows: Enable
self-adjusting workflows based 
on historical performance data
Human-in-the-Loop: Ensure
explainability, governance
control mechanisms and define
human decision gates

Build the Foundation & 
Define Architecture

Toolchain Definition: 
Consolidate redundant tools & 
define strategic toolchain
Data Architecture: Define data
sources, formats, flows & storage
Interoperability: Align on 
standards & protocols (MCP)
Use Case Selection: Select high-
priority AI use cases (vertical & 
horizontal)
Governanve & Infrastructure: 
Define Gov. framework and 
select AI platform

Scale, Connect & 
Contextualize

Context Management: Connect 
context modules and link 
integrated data
System Level Interoperability: 
Synchronize data and metadata
across tool and domain
boundaries
Federated Learning: Introduce
decentralized model fine-tuning 
to maintain data sovereignty
AIOps environment: Integrate
automated monitoring and 
feedback loops for continuous
improvement

Continuous Improvement 
& North Star Realization

End-to-end Engineering 
Integration: Multi-agent system 
supports large parts of 
engineering with defined human 
decision gates
Self-Learning System: Agents 
share context and lessons 
learned autonomously
Interoperability: Most 
engineering tools connected to 
multi-agent system
Governance Automation: AI-
based monitoring of data, model 
and process compliance 
established
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of the transformative power and role of AI and, based on this, draw up a strategic plan 

with milestones and identify quick wins. The quick wins are collected, structured, and 

clustered in the form of a use case funnel and include various AI use cases across the 

entire product development process. At the same time, the current status of the 

engineering toolchain, data landscape (data sources, data flows, data architectures, 

data catalogs), processes, and organizational structure is analyzed, and weaknesses 

that can be remedied with moderate effort are identified. 

2. Build the Foundation & Define Architecture: In the second phase, the foundations for 

an AI transformation are established. This involves assigning strategic tools to the 

product development process and sorting out legacy tools that do not meet the 

requirements of AI-driven engineering in terms of interoperability (APIs) and 

standardization (certificates & data formats). The aim is to prepare tools, data, 

processes, and people for AI-driven engineering, reduce complexity, and eliminate 

redundancies. Decisions also need to be made regarding the governance framework 

and the selection of the AI platform. The use case funnel defined in the first phase is 

refined and the use cases to be implemented are specified. It is particularly important 

to ensure that a balance is struck between vertical and horizontal AI use cases and that 

the use cases can be integrated with each other in the future to enable consistency 

throughout the entire product development process. 

 

Figure 30: Strategic use case selection approach considering horizontal and vertical balance 

Figure 30 shows an approach for selecting AI use cases in engineering, taking various 

criteria into account. In the first step, different use cases are identified, the number of 

which is then incrementally reduced until, in the end, a homogeneous network 

consisting of horizontal and vertical AI use cases results. These use cases are both 

technically feasible and offer a quick ROI but can also be connected to each other within 

multi-agent systems. 

3. Implement High-Value AI Use Cases: In the third phase, the AI use cases are 

implemented and the five dimensions of the framework presented in Section Framework 

for Scalable AI in Engineering are continuously monitored. With the implementation of 

the use cases, data quality is improved, metrics for data quality are established and 

monitored, and consistent metadata management is introduced for each use case. Tool 

Step 2 
Use Case & 
Feasibility Analysis

Filtering criteria
• ROI, strategic relevance, 

technical feasibility, tool 
integration

Step 1 
North Star Vision & Use Case 
Brainstorming

Step 3 
Strategic Embedding 
& Use Case Linking

Filtering criteria
• Integration into the overall network, scalability, 

multi-agent integrability, governance 
compliance
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interoperability is ensured through the implementation of MCP servers, and context 

modules in the form of vector and graph databases are introduced for each use case as 

needed. Compliance with the defined governance framework is also ensured by 

introducing a rights and roles concept for the AI platform that guarantees needs-based 

access to data and AI use cases. 

4. Scale, Connect and Contextualize: As the implementation of AI use cases progresses, 

greater emphasis is being placed on interconnection and contextualizing AI use cases. 

In the fourth phase, the context modules will therefore be linked together, connections 

between use case-specific graph and vector databases will be established, and the goal 

of system-wide interconnection of data, processes, and tools will be pursued. System-

wide interoperability of use cases is ensured through connections to MBSE tools, while 

domain-specific teams are given the opportunity to retrain the models in order to 

increase the performance of the use cases. The AI platform focuses on system-wide, 

automated monitoring in line with the defined governance framework and the 

establishment of feedback loops for the continuous improvement of individual use 

cases and their interoperability. 

5. Automate, Reason & Orchestrate: In the fifth phase, the focus is on further 

interconnection of the use cases by setting up the multi-agent system. The goal in this 

phase is to create the higher-level agent layers from Figure 27 and to intelligently control 

the domain-specific use cases at the lower level (executed by executors from Figure 27). 

This enables the system-wide integration of the agentic AI capabilities from Figure 26 

into the product development process and allows the introduction of cross-domain 

reasoning and orchestration capabilities. Cross-domain engineering processes such as 

change and configuration management can thus be supported and accelerated by AI, 

with the validity of the respective results of individual agents being ensured by human 

control mechanisms and decision as well as approval gates (human in control). The 

implementation of higher-level agent layers significantly increases the degree of 

automation in product development and enables state-dependent, adaptive workflows. 

6. Continuous Improvement & North Star Realization: In the final phase, continuous 

improvements are implemented in order to converge towards the defined North Star 

vision. The number of connected tools is expanded, new use cases are implemented, 

and further automation is pursued with regard to interoperability, governance, and self-

learning systems. Interfaces to production and feedback loops from production, use, 

maintenance, and logistics are also analyzed in this phase so that engineering is 

embedded in the company's entire AI ecosystem. 

 

Comment on AI Adoption in Engineering

Kathrin Schwan

Lead AI & Data DACH

Accenture

One cornerstone of the transformation toward AI-native engineering lies in turning
today’s fragmented data and tool landscape into an integrated, interoperable digital
foundation. This transformation requires structuring engineering data for machine
readability, adopting open APIs, and applying standards such as MCP and A2A to
enable seamless cross-domain collaboration between AI agents. Unified namespaces
and common data models (e.g., ISO 10303 STEP, OPC UA, SysML v2) are critical to
ensure consistent interpretation and exchange of information across systems,
domains and disciplines.

Together with a clear governance framework and the adoption of new ways of working
within an AI operating model, this digital foundation provides the backbone for scaling
AI in engineering. It enables organizations to move beyond isolated proof-of-concepts
predominantly vertical integrated toward a scalable, domain-spanning application of
AI that drives automation, generates measurable value, and fosters innovation across
the entire engineering lifecycle.
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Summary 
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Companies engaged in complex product development are increasingly striving to automate 

their R&D processes and transform them through the integration of AI. This transformation 

promises substantial acceleration of product development cycles, higher product quality, 

improved compatibility between mechanical, E/E and software components, and enhanced 

capabilities for design space exploration. While numerous approaches for embedding AI into 

engineering already exist, most organizations have not yet established a comprehensive 

management framework or achieved large-scale deployment of this technology. 

 

This white paper introduces a framework for scalable AI applications in engineering, designed 

to address the unique challenges of product development environments. Considering the 

specific boundary conditions in engineering, such as fragmented tools and data landscapes, 

heterogeneous data formats, stringent governance requirements, complex tool 

interoperability, and high interdependencies between engineering domains along the V-model, 

the framework identifies key dimensions that must be addressed to ensure scalable and 

sustainable AI integration. Following terminology from Systems Engineering, the framework 

distinguishes between vertical and horizontal AI use cases, depending on their level of domain 

specificity and cross-domain applicability. 

 

Based on an extensive literature review covering AI use cases across all domains of the V-model, 

the paper highlights that most existing AI applications currently exhibit a high vertical maturity 

but limited horizontal integration. In other words, they are typically designed around specific 

tools and data sources within isolated domains, with insufficient focus on cross-domain 

networking and knowledge sharing. This pattern mirrors the current state of industrial AI 

adoption, which is often constrained by tool and data fragmentation as well as organizational 

silos. Consequently, the paper argues that AI transformation must be driven by top 

management, ensuring a balanced portfolio of vertical and horizontal use cases and promoting 

integration across domains to unlock system-wide benefits. 

 

A further key insight of the study is the emerging role of multi-agent systems in engineering, 

which enable higher levels of automation and coordination between AI-driven tasks. This white 

paper illustrates how such systems can be applied in future engineering environments and 

analyzes their impact across four dimensions, namely processes, data, people, and technology. 

Finally, a roadmap is presented that outlines the path toward scalable AI deployment in product 

development. 

 

In conclusion, the paper recommends a strategic and iterative approach to AI transformation: 

selecting and developing use cases in alignment with the proposed framework, progressively 

interconnecting them into multi-agent systems, and ensuring governance and scalability from 

the outset. To achieve lasting success, organizations must also make deliberate choices 

regarding the right tools and technologies and understand the correct sequence for generating 

and structuring the required engineering artifacts. Providing contextual information across 

different system levels is essential to enable consistent interpretation and automated 

reasoning. Furthermore, the long-term integrability of initially developed use cases must be 

safeguarded to ensure they can evolve into interconnected multi-agent ecosystems rather than 

remain isolated solutions. Finally, human checkpoints embedded into agent-driven workflows 

play a pivotal role in maintaining oversight, trust, and accountability, ensuring that automation 

augments rather than replaces engineering expertise.   
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Abbreviation Meaning 

A2A Agent-to-Agent Protocol 

AI Artificial Intelligence 

BOM Bill of Material 

CAD Computer-Aided Design 

CASE Computer-Aided Software Engineering 

CFD Computational Fluid Dynamics 

CNN Convolutional Neural Network 

DL Deep Learning 

E-CAD Electrical Computer-Aided Design 

EDA Electronic Design Automation 

FEA Fixed Entity Architecture 

FEM Finite Element Method 

FL Federated Learning 

GAN Generative Adversarial Network 

GenAI Generative Artificial Intelligence 

GNN Graph Neural Network 

GTO Generative Topology Optimization 

HiL Hardware-in-the-Loop 

HDL Hardware Description Language 

KG Knowledge Graph 

LLM Large Language Model 

LSTM Long Short-Term Memory 

MBSE Model-based Systems Engineering 

MCP Model Context Protocol 

M-CAD Mechanical Computer-Aided Design 

PCB Printed Circuit Board 

PDM Product Data Management 

PINN Physics-Informed Neural Network 

PLM Product Lifecycle Management 

PMT Processes, Methods & Tools 

RAG Retrieval-Augmented Generation 

RC Resistor-Capacity 

RTE Register-Transfer Level 

ROI Return on Investment 

SiL Software-in-the-Loop 

SLM Small Language Model  

SysML System Modeling Language 

UML Unified Modeling Language 
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