
1 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

 Dirk A. Molitor, Vlad Larichev, Tobias

Guggenberger, Marcel

Altendeitering, Daniel Porta,

Matthias Ziegler

AI in New
Product
Development

Connecting Data &

Unlocking Knowledge

2 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

Table of Content
Executive Summary ... 3

Foundations of AI in Engineering .. 4

Digital Thread ... 5

AI in Engineering .. 7

Framework for Scalable AI in Engineering .. 9

01 Data Quality .. 12

02 Interoperability ... 15

03 AI Platform ... 19

04 Context Management ... 25

05 Federated Governance ..31

Stages of AI Readiness in Engineering ... 35

Use Cases ... 37

Requirement Engineering .. 39

Architecture ... 43

Product Design ... 47

M-CAD Applications ... 47

E-CAD Applications .. 49

CASE Applications ... 51

Simulation .. 54

System Testing ... 58

Release Management ... 62

Cross-Domain Applications ... 66

Use Case Summary ... 71

Outlook ... 75

Agentification of Engineering ... 76

The Future of Engineering ... 82

From Vision to Execution ... 85

Summary .. 88

References ...90

List of Abbreviations ... 125

3 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

Executive Summary

Artificial Intelligence (AI) has the potential to fundamentally transform new product

development. Applied effectively, it can automate and accelerate engineering processes end

to end, from early concept design to product release. Yet this transformative power can only be

realized if companies act early and decisively to establish the right technical, organizational,

social, and process foundations. Lacking a robust foundation, AI remains confined to pilot

successes far from achieving enterprise-wide value.

This white paper presents a scalable framework for AI adoption in engineering, designed to help

organizations move beyond fragmented pilot projects toward an enterprise-wide approach. The

framework enables leadership to align AI development with strategic business goals while

preventing the proliferation of disconnected use cases that dilute value and create complexity.

A central element of the white paper is the classification of AI use cases into two

complementary categories.

• Vertically integrated AI use cases focus on optimizing specific processes or domains,

such as automated design iterations or generation of domain-specific development

artifacts.

• Horizontally integrated AI use cases connect data, tools, and engineering domains,

enabling knowledge sharing, system-level optimization and application across domain

and tool boundaries.

While most organizations today concentrate on vertical applications, the greater long-term

opportunity lies in horizontal integration. By linking product requirements, architecture, design,

simulations, and test artifacts, horizontally integrated AI can unlock cross-domain synergies,

accelerate the product development process, and reshape how engineering value is created.

To capture this potential, technology and organization must evolve in tandem. Companies

should initiate high priority use cases early to generate learning effects and tangible ROI. At the

same time, they must invest in AI-ready infrastructure that ensures interoperability between AI-

native platforms and the existing engineering toolchain. Data quality and accessibility become

strategic assets, requiring the creation of high-quality data products and the deployment of

context modules in the form of knowledge graphs and vector databases to connect data, tools,

and processes. Finally, a robust governance framework is essential. Clear guidelines for AI

development and lifecycle management will secure alignment with corporate strategy,

maintain compliance, and prevent uncontrolled proliferation of use cases.

To ensure the long-term scalability of AI initiatives in new product development, various

dimensions must be considered. Unmanaged initiatives will lead to AI fragmentation along

existing tools and data silos, preventing the full potential of AI in engineering from being

realized.

Companies that act now to establish these technological, organizational, and governance

foundations will not only accelerate their product development cycles but also create a

sustainable competitive advantage. Those who delay risk being locked into fragmented
solutions and losing pace in an increasingly AI-driven engineering landscape.

4 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

Foundations of AI in

Engineering

5 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

Over the past decades, engineering has undergone a fundamental transformation driven by

digitalization. The introduction of computer-aided design (CAD), product data management

(PDM) and product lifecycle management (PLM) has evolved into the vision of the digital thread,

an interconnected data backbone that links data, information and processes across the entire

product lifecycle, from concept to end-of-life. This digital continuity provides engineers with

unprecedented visibility and traceability, enabling faster innovation, improved quality, and

more efficient decision-making. Many companies still struggle to realize an end-to-end digital

thread and attempt to manage the complexity of modern cyber-physical products with rigid,

sequential development methodologies and fragmented tool and data architectures, resulting

in long development cycles and inefficiencies.

In parallel, AI has matured from experimental research in pattern recognition and machine

learning (ML) into a practical tool that enhances nearly every aspect of engineering. In recent

years, the emergence of generative AI (GenAI) and Agentic AI has marked a new phase, where

AI is no longer only supporting decision-making but actively creating development artifacts

across the product development process such as requirement models, product architectures,

CAD designs, simulations and test results. This progress is reshaping how engineering teams

work, collaborate, and innovate in the future.

To leverage AI in engineering at scale, however, organizations require a structured approach.

This white paper aims to provide decision-makers, engineers, and other stakeholders with

guidance in the rapidly evolving landscape of AI applications in engineering. In this Section,

key concepts are introduced, a scalable framework for the adoption of AI in engineering is

presented, and a maturity model based on the automation levels of autonomous driving (SAE

2014) is developed to classify AI applications according to their vertical and horizontal maturity.

These foundations are then applied in the subsequent Section “Use Cases” to discuss the

current state of the art and to analyze 137 research papers. In the “Outlook” Section, we

formulate hypotheses on how engineering will evolve under the influence of AI, GenAI, and

Agentic AI, and outline the measures companies should take in the short and long term to

accelerate their product development processes and eliminate inefficiencies.

Digital Thread

The Digital Thread represents a core concept for the integrated flow of product data across the

entire product lifecycle. By collecting and networking heterogeneous product data across

different product representations, a Digital Thread ensures that information and data flow

seamlessly along the value chain, creating transparency, traceability, and collaboration

Definition of Digital Thread
A Digital Thread is a framework that seamlessly connects data, models, and
processes across the entire product lifecycle, from ideation and product
development to manufacturing and service (Abdel-Aty & Negri 2024). It enables
the continuous flow and accessibility of information by integrating previously
siloed systems and data sources, thereby overcoming data fragmentation across
departments and disciplines. By providing a unified, traceable, and context-rich
representation of a product’s digital history and evolution, the Digital Thread acts
as the future data backbone of engineering, manufacturing, and services. It
supports real-time decision-making, improves collaboration, and lays the
foundation for advanced capabilities such as GenAI applications and closed-loop
engineering feedback.

6 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

between engineering disciplines. Accordingly, a Digital Thread facilitates the exchange of

critical data in product development and enables additional services, the development of new

features and the rapid identification of optimization potential (Ghosh et al. 2025). A simplified

visualization of these interconnected product representations is shown in Figure 1.

Figure 1: Simplified Visualization of Connecting Product Representations via the Digital Thread

According to Abdel-Aty and Negri (2024), the main characteristics of a digital thread can be

summarized as follows:

• Integration Across Lifecycle Stages: it links engineering, production, supply chain,

and service data, enabling seamless collaboration.

• Real-Time Data Sharing: it provides up-to-date information access across

departments and disciplines.

• Improved Decision-Making: it enhances efficiency, quality, and predictive capabilities

across product development and operations.

• Foundation for Digital Twin: it supports the creation of a digital twin as a virtual

representation of the physical asset.

While closely linked, it is important to distinguish the Digital Thread from the Digital Twin. The

Digital Twin focuses on creating a virtual product-centric representation of a physical asset,

whereas the Digital Thread focuses on the flow of information and data across the product

lifecycle. Companies developing mechatronic and cyber-physical products as well as research

institutes recognize the necessity of establishing Digital Threads, which is why most recent

publications examine the significance of the Digital Thread (Bianchini et al. 2024, Abdel-Aty and

Negri 2024) and show the connections to AI applications (Zhang et al. 2024). Holterman et al.

(2024), for example, systematically show how the establishment of Digital Threads contributes

to the robustification of supply chains in various industries in the US economy and name AI as

a technology that leverages the Digital Thread. Although the concept of the Digital Thread has

been researched, solutions for its realization are already offered by software vendors, and the

concept theoretically promises significant acceleration of product development processes,

companies in industrial practice still struggle with scalable implementation. Data is typically

distributed across a fragmented IT and tool landscape, difficult to access, ambiguous,

incomplete and weakly connected across different engineering disciplines (Hedberg et al.

Product Development Manufacturing Usage & Service

ERP

MES

SCADA

PLC

Field Level

Collaboration

Application

Data Abstraction

Data Accumulation

Edge Computing

Connectivity

Physical Device
Mechanics

HW

SW

Func. Log. E-BOMReq. S-BOMM-BOM MPP

7 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

2020, Kwon et al. 2020). These circumstances make it difficult to establish seamless workflows

across tool and engineering discipline boundaries and require a lot of manual work. This is

particularly noticeable in change management processes, where cross-disciplinary work on

different engineering artifacts often must be carried out iteratively and the identification of the

affected configuration elements or impact chains is time-consuming and resource-intensive

(Burggräf et al. 2024).

Building on these challenges, AI technologies and its powerful subfields GenAI and Agentic AI

are increasingly recognized as enablers for realizing Digital Threads in practice. By addressing

issues of data fragmentation, semantic alignment, and workflow automation, AI can unlock the

potential of Digital Threads and make them scalable across industrial environments. The

following Subsection therefore introduces and distinguishes the terms AI, GenAI, and Agentic

AI and situates their role in the product development process.

AI in Engineering

For a long time, the application of AI in the product development process played only a minor

role. However, in recent years, breakthroughs in the fields of GenAI and Agentic AI have marked

a turning point. These advances have been accompanied by significant expansions in AI

capabilities, which in turn have massively broadened the range of possible applications of AI

algorithms within engineering contexts.

Figure 2: Evolvement of AI Algorithms and corresponding Capabilities

The evolution of AI and the corresponding extensions of its capabilities that emerged with the

establishment of distinct AI subfields are illustrated in Figure 2. AI can be understood as an

umbrella term for a wide variety of applications in which the automated execution of tasks is

enabled by techniques from computer science that originally required human-like intelligence.

As research on data-driven models progressed, specific subfields of AI emerged. These

Artificial Intelligence

Deep Learning

GenAI

Machine Learning

Learning patterns from

low-dimensional data

Agentic
AI

Learning patterns from

high-dimensional data

Creating new content

based on high-volume

database

Automation of multi-

step workflows using

interacting AI models

Pattern Recognition

Anomaly Detection

Classification

Regression

Statistical Inference

Feature Extraction

High-Dimensional Data

Processing

Scalability with Big Data

and Computing Power

Content Generation

Knowledge Transfer

Context Management

Human-like Interaction

Planning & Reasoning

Orchestration

Memory

Multi-Agent Collaboration

Tool Interoperability

Capabilities

Applications that can perform tasks requiring human-like

intelligence by leveraging techniques from computer science

8 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

subfields demonstrate different capabilities and impose varying requirements on the

underlying datasets.

ML emerged as a paradigm focused on identifying patterns and deriving inferences from

structured, often low-dimensional data (Mitchell, 1997). With the advent of Deep Learning (DL),

the field shifted toward extracting representations from high-dimensional data, enabling

scalability with large and unstructured datasets such as images, speech, and sensor signals

(LeCun et al. 2015). The next step in this evolution is Generative AI (GenAI), which leverages

large-scale models trained on high-volume databases to create novel content such as text,

code, or designs. GenAI thereby expands AI’s role from pattern recognition to content

generation and contextual interaction, offering new possibilities for knowledge transfer and

human-machine collaboration (Cao et al. 2023; Feuerriegel et al. 2024). Most recently, Agentic

AI builds on these generative capabilities by orchestrating multi-step workflows through

planning, reasoning, memory, and tool interoperability (Wang et al. 2024c). This marks a

significant increase in autonomy, where AI systems are no longer limited to generating outputs

but can act as agents within complex engineering and product development environments.

Taken together, these stages show not only a rapid technological evolution but also an

expansion of potential applications in the product development process: from supporting low-

dimensional data analysis (ML), through managing complex engineering data (DL), to assisting

in creative design and knowledge-intensive tasks (GenAI), and ultimately enabling partially

autonomous management of iterative, cross-disciplinary workflows (Agentic AI).

Before the full potential of the presented AI subfields can be realized in product development

processes, certain prerequisites must be established. While companies can already implement

high-value AI use cases that deliver a fast Return on Investment (ROI), focusing solely on

isolated use cases risks reinforcing the very challenges many organizations already face in

relation to data, tools, and processes: fragmentation. To avoid this, it is essential not only to

identify and implement high-value use cases but also to create the structural and organizational

conditions that allow AI in engineering to scale sustainably.

We argue that these approaches are not mutually exclusive but can complement one another.

On the one hand, implementing high-value AI use cases within individual engineering

disciplines can lay important groundwork for the Digital Thread. On the other hand, adopting a

“Thread-First” perspective (Accenture Research Report 2021) ensures that strategic objectives

and key capabilities are defined and continuously monitored, guiding the selection and

execution of AI initiatives. Such a combined strategy leverages synergies: it enables

organizations to capture rapid benefits through GenAI use cases while simultaneously ensuring

the long-term scalability of these solutions, ultimately helping to overcome data silos and

fragmented IT landscapes.

To ensure a scalable application of AI in the product development process, several dimensions

need to be considered and systematically consolidated within a unified framework. For this

reason, the following Subsection introduces a framework consisting of five key dimensions,

which should be considered in every engineering AI transformation.

9 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

Framework for Scalable AI in Engineering

The current starting point for most engineering companies developing complex, mechatronic

product is challenging and characterized by

• inadequate data flows / connectivity across lifecycle stages,

• persistent data silos,

• proprietary and non-standardized PMT departments,

• a lack of interoperability between engineering tools, methods, and disciplines,

• redundant, ambiguous and incomplete data,

• missing real-time access to consistent product information,

• the involvement of many expensive tools.

The root cause lies in historically grown engineering tool chains, workflows, and collaboration

models. Efforts to optimize individual disciplines have led to a fragmented landscape of tools,

data and processes, often lacking a holistic product-level perspective. This situation impedes

the realization of end-to-end traceability, consistent data management, and efficient cross-

domain collaboration.

Addressing these challenges requires deliberate efforts to establish a connected engineering

landscape that builds upon existing solutions. Central questions arise:

1. How can companies modify their brownfield environments to achieve maximum value

with manageable efforts?

2. How can engineering be prepared for the future, where AI will play a pivotal role?

3. What steps should companies take to rapidly address high-value AI use cases while

simultaneously building the foundations for scalable AI strategies in the product

development process?

To answer these questions, we propose a framework for the scalable application of AI in

engineering (see Figure 3) that helps organizations to pay attention to key capabilities, which

should be considered and monitored during the implementation of AI use cases and serve as

the foundation for a Digital Thread & AI adoption.

Our framework focuses on five key dimensions critical to establishing an AI-enabling Digital

Thread:

1. Data Quality: Increasing data quality consists of ensuring the use of a limited number

of consistent data formats for engineering artifacts across the product lifecycle and

eliminating redundant, ambiguous and incomplete data. We propose a decentralized

data architecture based on the data mesh concept (Dehghani 2022), which bundles

domain-specific data into data products and catalogs. Data is made available for the

application of AI use cases. The overall goal of the Data Quality dimension is to provide

accurate, reliable, and understandable data products from the engineering toolchain

that are accessible to data consumers. The aim is not to guarantee data completeness,

accuracy, and uniqueness across all data sets, but rather to ensure the necessary level

of data quality for particularly important data sets and facilitate reliable AI applications.

2. Interoperability: Data is generated, managed, and maintained within the engineering

toolchain. To enable both accessibility and modification of this data by AI applications,

bidirectional communication between the individual tools and the AI platform is

essential. This communication is facilitated through an interoperability layer positioned

between the engineering tools (and their data products) and the AI platform. The

10 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

interoperability layer ensures seamless data transfers, synchronization as well as agent-

based communication, thereby creating the foundation for efficient and scalable

integration of AI into engineering processes.

3. AI Platform: The AI Platform and its infrastructure ensure the technical realization of AI

use cases. The technical infrastructure consists of polyglot data storage solutions,

computing capacities and connections to cloud or on-premises systems. The AI

applications are then implemented on the AI Platform using microservice architectures

and containerized CI/CD pipelines, which are continuously updated and monitored.

4. Context Management: Knowledge from the entire product development process

should be made accessible and structured at central points. For this purpose,

knowledge is aggregated on the AI platform within context modules, which are

represented in the form of knowledge graphs (KGs) and vector databases. The objective

of these context modules is to capture the relationships between the development

artifacts contained in the domain-specific data products and enabling quick access to

relevant information. Access to model-based systems engineering (MBSE) tools and

(cross-domain) process models that represent product and process modeling at the

metamodel level is also an important source of context for providing GenAI and Agentic

AI applications with the information required for handling complex engineering tasks.

5. Federated Governance: The Federated Governance Team is responsible for the overall

management of the AI use case landscape. This includes the definition of standards and

interfaces for data transfer, the strategy definition for use case selection and the

specification and continuous monitoring of targets and KPIs. Specifying common,

cross-domain processes and ensuring interoperability between domains is the central

task of federated governance, without interfering too deeply in the domains' areas of

responsibility. To ensure secure and compliant use of product data, solutions must

provide dynamically managed usage rights while guaranteeing compliance with

regulations, safeguarding data ownership, enabling secure third-party interfaces, and

meeting cybersecurity requirements.

11 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

Figure 3: Proposed AI in Engineering Framework with five Key Dimensions

Context

Mgmt.

Federated
Governance

Interoperability
Multimodal
Processing

Standards &
Protocols

Data Lineage

Platform
Governance

Model
Governance

Data
Governance

Decision
Governance

Data Quality

D
a

ta
 Q

u
a

li
ty

Engineering
Toolchain

Data ProductsMetadata Mgmt.

Synthetic Data

Machine-Readability

Quality Monitoring

Synchro-
nization

AI Platform
Cloud vs.

On-Premises
AIOps Data StorageModelling

Context
Management

Knowledge
Graph

RAG
Linked

Product Data
MBSE

12 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

The following Subsections describe the five key dimensions in detail and provide insights into

the components that constitute these key dimensions. In addition, experts from the respective

domains share perspectives on industrial implementations and report on practical experiences.

01 Data Quality
Ensuring high data quality in engineering tool landscapes is a critical challenge for any

enterprise. Engineering activities generate and manage a wide range of artifacts across multiple

tools. As products become more complex with increasing E/E and software integration, data

heterogeneity increases, and the number of different data formats expands, leading to an

exponential rise in data management complexity. Each engineering domain typically works with

its own data models, formats, and lifecycles. To effectively manage this complexity, a data mesh

approach with a decentralized data architecture (Dehghani 2022) is recommended, which is

well-suited for engineering environments (Hooshmand et al. 2022). In such a setup, domain

teams act as data product owners, leveraging their deep understanding of domain-specific data

and formats. Domain-specific data is bundled into consumable data products and provided to

a variety of data consumers across the organization.

Figure 4: Pillars of Data Quality in Engineering Tool Landscapes

Figure 4 shows the four most important pillars for ensuring high data quality. The pillars are

discussed below in the context of product development.

1. Machine-Readability: A key objective is to maximize data reuse across the enterprise

while minimizing the number of data formats in use. To achieve semantic consistency

and machine-readability, particular emphasis must be placed on the codification of

engineering artifacts, transforming heterogeneous data into structured, machine-

readable formats and embedding them in schema syntaxes (Hooshmand 2022).

Engineering data is highly heterogeneous, which is why different domains have their

own standards and data formats (see Figure 5). The conversion of unstructured data into

defined schemas and the introduction of domain-specific semantic rules is a basic

Machine-Readability

• Transform data into
standardized formats

• Apply schema definitions
and formats

• Codify domain
knowledge using
ontologies

Data Quality Monitoring

• Detection of data
inconsistencies

• Implement quality
monitoring pipelines

• Establish domain-
specific validation
rules

• Define and maintain
metadata schemas

• Enable semantic
interoperability

• Metadata as foundation
for linking, querying and
integrating cross-tool
data

• Data balancing for
realistic data distributions

• Foundation for
simulations on domain-
specific scenarios

• Extension of incomplete
datasets

Synthetic Data
Generation

Metadata
Management

13 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

prerequisite for making data machine-readable and thus preparing it for use by AI

algorithms. For example, unstructured data in industrial companies contains a wealth of

information that is extremely important for AI applications (Tinnes et al. 2024), AI

algorithms can extract valuable information from it (Mahadevkar et al. 2024) and serve

as data preprocessors (Zhang et al. 2023). Care must be taken to ensure that the outputs

of the algorithms are structured and correspond to the specifications of the desired

data formats (Liu et al. 2024b). Especially in engineering, there are many different,

complex technical documents and files from which a variety of information can be

extracted. Jamieson et al. (2024) provide a comprehensible overview of AI applications

for the processing of technical engineering documents. Zhang et al. (2025b) summarize

different use cases that derive textual descriptions and annotations from CAD models.

A structured analysis conducted in 2022 within the AI Marketplace initiative assessed

23 common data formats and data models from the product development process for

their suitability in serving as AI model input and demonstrated that, at this point in time,

many of them require transformation processes that result in data loss (AI Marketplace

2022).

Figure 5: Typical Data Formats, Models and Standards in the Engineering Domain based on prostep ivip
(2025)

In the future, the reusability of machine-readable data from past product development

cycles and the use of standardized data formats will be one of the most important

success factors for the scalable application of AI in product development and should

therefore be part of every engineering AI transformation.

2. Data Quality Monitoring: To ensure compliance with domain-specific schemas, a range

of data quality tools have been developed to continuously monitor, evaluate and

improve data quality (Altendeitering & Guggenberger 2024, Altendeitering et al. 2024).

Typical cases are the identification of inconsistencies, missing values, redundancies or

outdates, where data quality tools either make automated modifications or guided

recommendations to the user. AI algorithms can provide support for highly repetitive

tasks, such as cleansing data (Narayan et al. 2022) and converting unstructured data

into machine-readable formats (Zhu et al. 2024). The creation of monitoring pipelines

and the introduction of domain-specific validation rules is recommended to enable the

most efficient possible bundling into data products and to improve their quality. Zhou

Modelling & Simulation

Requirement

Arch.

Product Design

Testing

Release

ReqIF

FDX

SysML/XMI

UML

JT

STEP

FMI

ODX

AUTOSAR

VEC

3MF

Modellica

GENIVI

FMI SSP

OSLC / RDF

OPC UA

I++

Auto.ML

14 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

et al. (2024b) provide a comprehensive review of data quality dimensions and tools for

AI applications. It is important to note that while accuracy, completeness, and

unambiguity of data are desirable objectives, achieving them in absolute terms is either

unattainable or only possible at unjustifiable effort. In the context of an AI engineering

transformation, this raises the question of which data are particularly critical, which

need to be monitored, and to what extent data quality must be improved to generate

reliable AI outputs.

3. Metadata Management: Among all data layers presented in Figure 3, metadata plays a

critical role and is decisive for algorithms to understand the horizontal and vertical

complexity of a mechatronic product (Bode et al. 2024). Metadata provides the

semantic context needed for machines and humans alike to understand and process

data. It forms the foundation for semantic interoperability, a prerequisite for data

sharing and integration activities. Therefore, engineering artefacts should be

consistently described by metadata, whereby GenAI can support the creation,

standardization, and maintenance of metadata (Yang et al. 2025). Metadata is

particularly important in the framework presented in Figure 3, as it is fundamental to

two of the key dimensions presented: interoperability and context management.

4. Synthetic Data Generation: When only incomplete datasets or those that do not cover

the full solution space are available, enriching them with synthetic data is an effective

way to improve the performance of AI algorithms. Synthesizing data can also serve as a

valuable fallback, especially in domain-specific scenarios where little or no real-world

data is accessible, such as early development phases, edge cases, or rare failure modes

in engineering systems. In engineering domains, the generation of synthetic data is

gaining increasing importance, as real-world data collection is often time-consuming,

expensive, or limited by operational constraints. Techniques for synthetic data

generation range from simple rule-based simulations to advanced generative models

like Generative Adversarial Networks (GANs) or diffusion models. These synthetic

datasets can be used to train, validate, and test AI models under a variety of conditions

and have proven to enhance AI performance in different domains, such as requirement

management (El-Hajjami & Salinesi 2025), MBSE (Muttillo et al. 2024) and scenario

testing (Song et al. 2025).

In summary, managing data quality in engineering tool landscapes is fundamental for the

success of any AI use case and requires a shift towards decentralized data ownership, as in-

depth knowledge of domain-specific data is only available in the domain teams. Recognizing

weaknesses in data management and tackling them with the pillars presented is an important

first step towards the transformation into data-driven engineering. LLMs have recently proven

that they are suitable for a range of tasks to increase data quality (e.g. Naeem et al. 2024) and

often the first valuable AI use case is not to optimize (engineering) processes, but to improve

data quality (Singh 2023).

15 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

02 Interoperability
In the framework presented in Figure 3, we present multiple levels on which data is managed

and made accessible. Data must be transferred between engineering toolchain, its data

products and the AI platform and its context modules. The transfer should be as efficient and

as close to real time as possible to ensure up-to-date representations. Interoperability refers to

the exchange of data between these levels and thus pursues the goal that different product

representations, artifacts and metadata are continuously synchronized and thus the same

product data with different levels of detail is available at all levels. Access to the latest data is

particularly important for AI in engineering, as relationships between domains, disciplines, and

development teams evolve dynamically, and the performance of AI algorithms can only be

guaranteed if accurate and up-to-date context is provided (Mei et al. 2025). Figure 6 shows the

four most important pillars for enabling interoperability, which are further discussed below.

Industry Insights into Data Quality Management

Marcel Altendeitering

Head of Department

Fraunhofer ISST

Tobias Guggenberger

Group Lead

Fraunhofer ISST

The increasing number of data sources, volumes, and formats makes data quality
management a complex topic. The processes for identifying, analyzing, and resolving
data quality issues are often manual and cumbersome. Moreover, the necessary
metadata in the form of data profiles and data quality rules is often not available,
which further complicates data quality management. As a result, data quality
problems often remain undetected and lead to process disruptions.

To address this problem, we implemented AI and ML technologies at multiple points
of the process. At the beginning of the process, we utilized ML algorithms for
automated data profiling and generating data quality rules for multiple attributes to
identify dependencies. Based on these solutions, we used established GenAI models
to generate metadata and transform the identified data quality rules into SQL code.

An important insight of the use case was that AI and ML technologies are very well-
suited for identifying complex data quality rules and accuracy problems involving
multiple attributes. These are often missed by humans. Additionally, the automated
generation of SQL code helps reduce the manual effort required for creating data
quality rules.

16 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

Figure 6: Pillars of Interoperability in Engineering AI Landscapes

1. Multimodal Processing

Engineering data are inherently heterogeneous, appearing in many formats and

dimensionalities throughout the product development process (see subsection Data

Quality). This is why data connectors must be tailored to accommodate these variations

and preserve context. Engineering data combines 3D models, simulation results, test

signals, and rich metadata. Some arrive as very large files, others as fast, continuous

streams. To keep the levels of the framework synchronized, the interoperability layer

needs connectors that can move these different data types efficiently and keep their

context linked. Research on Digital Thread shows that lifecycle analytics only work when

heterogeneous data stays connected across systems, not just copied in pieces (Abdel-

Aty et al. 2024). At the same time, studies on big-data transfer in cloud environments

show that the choice of the transfer approach strongly affects throughput, latency, cost,

and security (Majigi et al. 2025), which is why connectors should support both bulk

movement and real-time streaming while preserving metadata for traceability.

Especially the transfer of high-dimensional data such as CAD and simulation models is

challenging due to large file sizes and heterogeneous formats. Recent studies show that

converting these assets into HDF/HDF5 can streamline movement of memory-intensive

CAD models (Khan & Rezwana 2021) and simulation datasets (Kunc & Bröcker 2024;

Bröcker et al. 2024), which has the potential to improve interoperability between

engineering tools and AI platforms in the future.

2. Data Lineage: Data lineage, closely linked to the concept of data provenance, refers to

the lifecycle and movement of data, enabling the capability to identify the data source

(input) and destination (output), including all transformations, processes and

intermediate steps, at any point in time and in any system. Especially when data is

transferred multiple times between the levels of the framework, it is important for

regulatory and validation purposes to comprehend the origin of the data to be able to

continuously assess data quality and reliability. Corresponding information can be

Standards & Protocols

• Open standards
empower AI ecosystems

• APIs as access to data &
tool manipulation

• Enabling multi-agent
systems by emerging
standards (MCP, A2A)

Smart Synchronization

• Keeps data updated
across platforms and
tools

• Minimizes manual data
transfer

• Automated ingestion
pipelines with real-time
capabilities

• Selection of powerful
data connectors and
transferable formats

• Consideration of
impacts on costs,
throughput, latency
and security

• Traceability of data
flows and
transformations

• Supports debugging
and root cause analysis

• Foundation for data
governance

Data LineageMultimodal
Processing

17 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

stored in metadata, which is why data lineage is closely linked to the quality assurance

of data (see key dimension Data Quality). In cases where the performance of trained AI

models is unexpectedly poor, data lineage approaches help identify errors in the

datasets and uncover their root causes (Pahune et al. 2025). Data and AI form a

sociotechnical construct in which effective collaboration between domain and AI

experts working on different levels in the framework depends on a shared

understanding of the data: an understanding made possible through data lineage,

which serves as a prerequisite for transparent communication about data origins,

context, and transformations (Jarrahi et al. 2023).

3. Smart Synchronization: To be able to access the most up-to-date data at all levels, the

data must be synchronized without creating copies. Access to current data in real time

is a key feature for the engineering of the future, as it allows real-time optimization

between levels and even the integration of data outside of engineering (manufacturing,

maintenance & service), as emphasized by Ghosh et al. (2025). Data federation enables

such access by allowing users to query multiple, heterogeneous data sources through

a unified interface, without duplicating or moving the data. This minimises the amount

of integration work required, helps maintain up-to-date data, and enables real-time

analysis. 1 (Gu et al. 2024) Complementing this, modern data stream processing

systems, as highlighted by Fragkoulis et al. (2024), provide the technical backbone for

real-time synchronization by enabling stateful, low-latency, and fault-tolerant

integration of live data flows across distributed engineering tools and systems. It is

important to recognize that valuable data does not just come from engineering tools,

but also includes information from production systems, sensors, and IoT devices,

offering insights from the manufacturing and service phases and enabling the vision of

closed-loop engineering (Durão et al. 2024). Regarding synchronization, users should

ask themselves which data is exchanged in which format and at what frequency

between the levels to minimize costs and latencies as much as possible.

4. Interoperability Standards: Especially dealing with engineering data, a lot of

interoperability challenges can be faced, such as different standards and specifications,

lack of semantics, lack of communication mechanisms and protocols, high complexity

and costs, lack of trust regarding data sharing and security/privacy concerns and

scalability (Liepert et al. 2024). Interoperability and integration must not only be

considered in terms of streaming data from engineering tools into the AI platform, but

also in the reverse direction: insights gained from data-driven analysis at higher system

levels must be fed back into the engineering tools and result in (human-supervised)

modifications of engineering artifacts. This bidirectional flow is essential to enable data-

driven engineering. Many standardized technologies for data exchange are available

nowadays. Most widely used are APIs, which are implemented in almost every modern

tool or platform. Standardized data exchange between tools and platforms can also be

enabled through ETL data pipelines (Foidl et al. 2024) and message queues (Maharjan

et al. 2023). Additional emerging technology standards that significantly improve tool

accessibility and agentic communication are Anthropic’s Model Context Protocol (MCP)

(Hou et al. 2025b) and Google’s Agent-to-Agent (A2A) protocol (Ray 2025). MCP ensures

1 Gu et al. (2024) provide a comprehensive survey of data federation systems, analyzing 51
solutions using a structured evaluation framework. Their work identifies key capabilities (e.g.,
query languages, security features, supported data types) and highlights data federation's value
in enabling integration of distributed data without compromising freshness or consistency.

18 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

standardized communication between agents and (engineering) tools, while A2A

enables standardized communication between multiple agents in multi-agent systems.

Figure 7 illustrates a MCP workflow for an engineering use case. The engineer interacts

with an MCP Host, which represents an application, and submits a prompt to the MCP

Client, which the MCP Host manages. Based on the prompt, the MCP Client establishes

a connection to an MCP Server that has access to one or more engineering tools.

Through API invocation and the use of pre-defined prompt templates, the server can

either retrieve data from the tools or execute tasks within them. During this process, the

client and server communicate bidirectionally until the task is completed. The engineer

then receives a response from the client regarding the task's completion.

Figure 7: MCP Workflow based on Hou et al. (2025b) adapted to an Engineering Application

In the example provided, the engineer ideally receives a list of all requirements related

to the housing, which are managed within the requirement management tool accessible

by the MCP Server. In the future, MCP implementations will mean that routine tasks such

as data calls or simple modifications to engineering artifacts will no longer have to be

performed within the designated tools, but can be carried out using simple prompts on

an AI platform.

In summary, interoperability is essential to ensuring a consistent, real-time representation of

engineering data across different abstraction levels in the enterprise IT landscape. It enables

synchronized product views from detailed engineering artifacts to high-level knowledge graphs

and AI-ready datasets. Interoperability requires multimodal data processing capabilities,

domain-level ownership, and clear traceability to ensure transparency. Real-time data

synchronization and federated access help keep information up to date without duplication.

Standards and integration technologies like APIs and MCP or A2A enable smooth data flow

between systems, turning AI insights into engineering actions. This lays the groundwork for

data-driven engineering and faster, data-driven decisions.

Prompt:
„List all

requirements
affecting the

housing.“

MCP Hosts:
Application attempting to

acess data

MCP Workflow

MCP Clients:
Protocol clients with

1:1 connection to
configured MCP

servers

MCP Servers:
Servers with access to

engineering tool
landscape and operation

execution capabilities

API Invocation

Web Services

Databases

Local Files
C

lie
nt

Se
rv

er

Request

Response

Notifi-
cation

1

2

3

Engineering Tools

Engineer

Transfer Layer

19 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

03 AI Platform
In addition to decentralized data architecture, engineering enterprises require a centralized AI

platform where AI use cases can be developed providing required storage and computing

capacities. Modern AI algorithms, particularly LLMs and agent-based systems, depend on

powerful infrastructures consisting of computing resources, storage, and containerized

development environments. Selecting the right vendors, embedding the AI platform into the

overarching enterprise architecture (Ettinger 2025), and designing the architecture for large

enterprises is a highly complex process (Ismail et al. 2025, Eken et al. 2024), but crucial for AI

adoption in engineering.

Figure 8: High-Level AI Platform Architecture

Figure 8 shows a high-level architecture of a central AI platform with the most important layers.

With the ingestion of data (see key capability interoperability), data is fed into the platform and

Industry Insights into Data Streaming & Product Data
Changes

Sebastian Mario Jülich

Solution Architect

Accenture

Tamás Biró

Development Lead

Accenture

At a German Automotive Company, bridging the gap between Car Design and Component
Manufacturing has always been a challenge. Meeting it means combining data sources for
Bills of Materials, Configurations and Supply Chains.

We used the Streaming Service Kafka to connect various source systems to a central cloud-
based data hub which does the calculation. Sources communicate a change to their data
via message which is put into a topic in the stream. Kafka lets the receiving end choose
when to read these messages.
There is a dilemma, though: Product data is massive, reader’s interests are very diverse,
changes happen frequently, calculating them is costly. Therefore, senders have an incentive
to add content to the messages to provide for more receiving parties at the same time. On
the other hand, receivers prefer smaller, more relevant topics. Addition of content means
more messages. A small amount at first, but the growth was exponential and overwhelmed
our receiver soon. What to do?

As we could not limit the topics’ sizes and senders were unable to flag the changes, we
established an “intelligence kernel” in the receiver. A concentrated, quick to apply version
of the main intelligence which is itself constantly updated in case of relevant changes. It
reduced the number of irrelevant messages by more than 99%.

Data
Ingestion

Layer

Data Storage Layer

Data
Curation

Layer

Modelling Layer

Training Pipeline

Testing Pipeline

Deployment Pipeline

Reporting
& Service

Layer

Monitoring Layer

On-Premises

Data
Ingestion

Layer

Data Storage Layer

Data
Curation

Layer

Modelling Layer

Training Pipeline

Testing Pipeline

Deployment Pipeline

Reporting
& Service

Layer

Monitoring Layer

Cloud

20 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

then processed in the curation layer using preparation, extraction and transformation

techniques. The processed data is stored in appropriate formats across suitable databases

(polyglot storage) and is readily available for direct input into the models. The modelling layer

includes containerized pipelines for training, testing, and deploying the various AI models. In

the monitoring layer, the performance of the AI models is continuously assessed, and

appropriate actions are taken in case of performance degradation. The reporting & service layer

serves as the interface to the user, presenting the results of the model applications through

visualizations such as dashboards.

Poor AI platform architecture decisions can have severe consequences and jeopardize the

success of the entire engineering AI adoption. Furthermore, cybersecurity concerns must be

addressed, ensuring that company data and the associated intellectual property are

continuously protected (Admass et al. 2024). This is especially critical in highly regulated

industries or when handling data that directly has impacts on the company’s competitiveness.

In such cases, the question often arises whether sensitive data should be processed in cloud

environments or whether on-premises solutions are the better choice (see also key dimension

federated governance). Based on four pillars (see Figure 9), we outline the key capabilities that

should be considered in designing the AI platform and the potential implications of various

design decisions.

Figure 9: Pillars of AI Platforms in Engineering AI Landscapes

1. Cloud vs. On-Premises: For engineering enterprises aiming to leverage AI at scale, the

choice between on-premises and cloud-based platforms is more than a technical

decision. It is a strategic consideration with long-term implications. AI workloads,

particularly in product development contexts, are characterized by high data volume,

velocity, and heterogeneity. As Theodorakopoulos et al. (2024) highlight, many on-

premises infrastructures struggle to scale effectively under these conditions. In

contrast, cloud environments offer dynamic scalability, enabling enterprises to process

and analyze large, diverse datasets without investing in hardware expansion. When

Data Storage

• Tailored storage
consisting of data lakes,
warehouses and meshes

• Vector stores and
unstructured data
retrieval

Modelling

• Open Source vs. Non
open Source

• SLM vs. LLM

• RAG vs. Finetuning

• Flexible deployment for
AI workloads

• Balance between cloud
scalability and on-
premise data control

• Hybrid and multi-cloud
strategies

• Consistent runtime
environments for
pipelines across
lifecycle

• Orchestration at scale

• Decomposition into
microservices

AIOpsCloud vs. On-
Premises

21 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

assessing the trade-offs between cloud and on-premises deployments, enterprises

should consider the following dimensions:

• Security & Compliance: On-premises solutions offer more direct control, while

cloud providers offer certified compliance solutions but require trust in external

parties.

• Cost: On-premises solutions require significant upfront investment and

maintenance. Cloud follows a pay-as-you-go model (IaaS, PaaS), which scales with

usage but may become costly over time.

• Performance: On-premises solutions can reduce latency for real-time systems.

Cloud offers powerful hardware on demand but may suffer from network-induced

delays.

• Scalability & Availability: Cloud platforms provide elastic scalability and built-in

redundancy. On-premises environments are slower to scale and require manual fault

tolerance measures.

A common concern among enterprises is the risk of vendor lock-in when committing to

a single cloud provider. To mitigate this, enterprises can follow a multi-cloud approach

that distributes services across different platforms, increasing resilience and

operational flexibility (Dai et al. 2025). Moreover, the emergence of hybrid architectures,

combining on-premises servers, edge computing, and cloud platforms, provides

engineering companies with new levels of freedom to align technical needs with

strategic priorities.2 One of the most promising paradigms in this context is Federated

Learning (FL), which allows AI models to be trained across distributed data sources

without centralizing the underlying data. Yao et al. (2022) and Zhan et al. (2025) describe

FL frameworks in which sensitive data remains on-premises or at the edge, while only

encrypted model parameters are exchanged with the cloud. This method respects data

sovereignty, minimizes bandwidth usage, and enables the training of models across

heterogeneous environments. It is particularly effective in addressing latency,

computational constraints, and system reliability.

In practice, the decision between cloud, on-premises or hybrid infrastructures should

reflect the nature of the AI workload and the strategic priorities of the organization. On-

premises implementations are best suited for environments where AI is tightly coupled

with proprietary hardware and low-latency, real-time inference is essential, or where

data sensitivity (e.g. in highly regulated industries) prohibits external transmission.

Conversely, cloud-based solutions are recommendable for enterprises that need to

support variable workloads and rapidly train and deploy new models.

2. AIOps: To successfully adopt AI at scale, engineering companies must go beyond

isolated AI use cases and build robust infrastructures and architectures (see Figure 8)

for development, deployment, and monitoring. AIOps, which represents the fusion of AI

and DevOps, provides exactly that foundation. AIOps enables scalable and secure ML

workflows, offering automation, standardization, and traceability across the entire

lifecycle. While not yet widely implemented in industry (Faubel & Schmid 2024), AIOps

will be essential for engineering companies seeking to operationalize AI effectively.

Rooted in CI/CD principles, AIOps emphasizes microservices, containerization, and

orchestration to ensure modularity, scalability, and reliability (Kreuzberger et al. 2023).

It also plays a crucial role in protecting against security risks such as data leakage,

2 See Loconte et al. (2024) for a comprehensive framework on hybrid industrial AI architectures
involving IoT, edge, and cloud layers.

22 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

poisoning attacks, and systemic vulnerabilities (Dai et al. 2025). In practice, however,

AIOps adoption varies significantly. Different levels of technical expertise, even within

the same organization, influence how workflows are designed and operated (Rzig et al.

2024). Success depends not just on tools, but also on organizational alignment, training,

and culture (Mehmood et al. 2024; Faubel & Schmid 2024).

With the rise of GenAI and LLMs, LLMOps has emerged as a specialized extension.

Compared to standard ML or DL deployment, LLMOps must address greater compute

and storage requirements, while ensuring scalability and responsiveness (Pahune &

Akhtar 2025). Although still at an early stage of maturity (Borovits et al. 2025),

companies are advised to invest early in LLMOps expertise to stay ahead of the curve,

since AIOps and increasingly LLMOps are becoming strategic capabilities for

engineering organizations aiming to industrialize AI development and deployment.

3. Model Selection: The selection of suitable AI models for engineering applications is

both a technical and strategic decision. Engineering tasks are inherently diverse, from

text- or code-based artifact generation (requirements, test cases & scripts, release

notes) to 3D data processing and generation for CAD or simulation models. An overview

of (selected) commonly used AI models in engineering contexts is presented in Table 1.

In the last years, transformer-based LLMs have emerged as powerful tools capable of

interpreting, generating, and reasoning over multimodal engineering data, including

text, code, images, and time series. These models increasingly act not as isolated

systems, but as components within Agentic AI ecosystems that collaborate to solve

complex engineering tasks.

Table 1: Selected AI Models Typically Applied in Engineering Use Cases

Model Description Engineering Use Cases

Large/Small

Language Model

(LLM/SLM)

Transformer-based models capable

of understanding and generating

natural language

Requirement generation

Test case generation

Release note generation

Text-2-CAD

Convolutional

Neural Network

(CNN)

Deep learning model specialized in

processing high-dimensional data

such as images or time series

Defect detection in XiL testing

CAD/simulation model

classification

Graph Neural

Network (GNN)

Deep learning algorithm designed to

operate on graph-structured data

BOM analysis

Dependency and traceability

analysis of RFLPT3 artifacts

Physics-Informed

Neural Network

(PINN)

Neural networks that incorporate

physical laws (e.g., partial differential

equations) as constraints

Surrogate modelling for

FEM/CFD simulations

Conventional ML

algorithms

(classification)

Different conventional ML algorithms

such as random forest or support

vector machines for classification

tasks

Artifact property classification

Duplicate or inconsistency

detection

Conventional ML

algorithms

(regression)

Different conventional ML algorithms

such as multilayer perceptron,

decision tree or support vector

regression for regression tasks

Parameter prediction based on

CAD/simulation data

Effort and performance

estimations

3 Requirements, Functional, Logical, Physical, Test.

23 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

As the codification of engineering knowledge accelerates, the role of LLMs and multi-

agent systems is expected to grow. The future lies in orchestrating collaborative

reasoning chains between (cloud-based) LLMs and on-premises-deployed Small

Language Models (SLMs). In this paradigm, LLMs handle abstract, high-level reasoning

tasks while SLMs execute context-specific operations at the device level. This hybrid

architecture not only reduces latency and cost but also aligns with the distributed

nature of industrial systems (Li et al. 2025d). Model size plays a crucial role in this

division of labor. LLMs, with billions of parameters, offer generality and adaptability

across domains. SLMs, by contrast, typically range from a few million to several hundred

million parameters and are optimized for edge deployment on on-premises hardware,

mobile devices or microcontrollers. As shown by Subramanian et al. (2025), while SLMs

may lack the broad generalization capabilities of LLMs, they often outperform them in

narrow, domain-specific tasks due to their efficiency, lower computational demands,

and reduced inference costs. This suggests that smaller models are not a compromise,

but a strategic advantage when deployed appropriately.

Beyond technical trade-offs, organizational considerations are increasingly shaping

model selection. Issues of compliance, control over proprietary data, and risk

management are prompting many companies to turn to open-source models that can

be deployed on-premises and fine-tuned to meet domain-specific needs. One

prominent example is DeepSeek, an open-source LLM that has demonstrated

competitive performance with leading proprietary models like OpenAI’s GPT or Google’s

Gemini, particularly in specialized tasks. DeepSeek not only allows fine-grained

customization but also supports efficient domain adaptation (Guo et al. 2024; Rahman

et al. 2025). Injecting domain-specific knowledge into AI systems remains a top priority

for industrial users (Lee & Hu 2023). This challenge raises a fundamental decision point:

Should companies rely on out-of-the-box general-purpose foundation models, apply

transfer learning for task-specific fine-tuning, build Retrieval-Augmented Generation

(RAG) pipelines to supply contextual data dynamically, or train models from scratch?

In most industrial scenarios, end-to-end training of LLMs is not a viable option due to

data scarcity and high resource demands. As such, hybrid strategies combining RAG,

fine-tuning, and specialized SLMs deployed on-premises represent the most promising

way forward. In principle, each use case should be analyzed in detail to determine which

model is best suited to the specific problem and in many cases, the use of LLMs can be

avoided. Some engineering applications can be effectively implemented using other ML

or DL algorithms that require significantly less computing power and lower data

volumes.

4. Data Storage: Modern engineering departments produce large amounts of

heterogeneous data, encompassing structured formats such as simulation outputs and

measurement data, as well as unstructured sources like design documentation and

research notes. Efficient polyglot storage architecture is essential to unlock the

potential of such data for analytics, monitoring, and AI-driven decision-making.

Traditional architectures like data warehouses and data lakes have served distinct

purposes. Data Warehouses are designed to integrate structured, cleaned, and pre-

processed data using ETL pipelines, enabling consistent reporting and historical

analysis. In contrast, Data Lakes ingest both structured and unstructured data in its raw

form via ELT pipelines, deferring transformation to query time and thus offering more

flexibility for diverse analytics tasks (Azzabi et al. 2024). However, enterprises are

increasingly facing a trade-off between the structured reliability of warehouses and the

24 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

flexible access patterns of data lakes (Dai et al. 2025). This has led to the emergence of

the lakehouse paradigm, which combines the advantages of both models. As described

by Armbrust et al. (2021), lakehouses retain low-cost, open file formats and avoid data

duplication and staleness, while supporting SQL-based analytics and AI workloads

within a unified platform. Lakehouses aim to simplify complex architectures by

consolidating batch and streaming data pipelines, minimizing technology

heterogeneity, and eliminating redundant data movement between systems (Schneider

et al. 2024). They must meet rigorous requirements: consistent storage formats, support

for CRUD4 operations across all data types, relational tabular structures, a declarative

query language, consistency guarantees, and task-isolated processing. Moreover, direct

data access and unified batch-stream processing capabilities are crucial for enabling

advanced AI workflows.

In today’s increasingly complex engineering tool landscapes and AI platforms, the

concept of polyglot storage architecture is becoming a necessity rather than a choice.

As outlined by Kasper et al. (2024), storing all product lifecycle data in a single,

monolithic database is neither scalable nor efficient. Instead, polyglot persistence

enables a multidimensional representation of product data across various views

(RFLPT), while optimizing performance, scalability, and data accessibility. This is in line

with the decentralized data architecture based on the data mesh concept

(Goedegebuure et al. 2024). Corresponding databases at domain and tool level thus

represent the authoritative single source of truth (Bone et al. 2018, Kwon et al. 2020)

and allow the higher levels (AI platform, context modules) to access this data in real

time.

In summary, a centralized AI platform is essential for engineering enterprises to efficiently

develop, deploy, and monitor AI use cases by providing scalable computing, storage, and

containerized environments integrated into the overall enterprise architecture. Its success

depends on robust design decisions across four pillars ensuring scalability, security, and

effective AI adoption in complex engineering landscapes.

4 CRUD: Create, read, update and delete.

Industry Insight into Building a Scalable Cloud Data Platform

Dr. Martin Wunderli

Head of Modern Data

Platforms

Accenture

The client, a large industrial manufacturer, had factory sensors generating
valuable data that remained siloed in a fragmented on-premises setup, creating
bottlenecks and slowing innovation. Growing data volumes overwhelmed
legacy systems, making it difficult to scale analytics efficiently, prompting the
adoption of a cloud-based, scalable architecture for real-time data processing
and AI-driven use cases like predictive maintenance.

The new data platform, built on a modular data lakehouse design, integrated
open-source technologies such as Apache NiFi, Kafka, Spark, Airflow, Trino,
and S3 object storage, all orchestrated on Kubernetes. This architecture
supported elastic scaling, reproducible deployments, and unified access to
sensor and enterprise data, providing a strong foundation for operational
analytics and AI workloads.

The implementation proved that a modular, cloud-native architecture can
deliver agility and scalability for industrial AI. Key lessons included the need for
strong data quality management, clear data contracts, and close collaboration
between data and operations teams. Remaining challenges include optimizing
real-time inference workloads and improving end-to-end observability across
data pipelines.

Guido Schmutz

Senior Data Architect

Accenture

25 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

04 Context Management
To fully exploit the potential of AI in product development, it is necessary to provide models

with holistic access to diverse product information, such as product structures, development

artifacts, documentation, development processes, legal requirements and standards and

system models. Providing context and causal cause-and-effect relationships between the

engineering domains involved in the development process is a key challenge. This challenge

can be solved by creating and continuously maintaining context modules, such as graph

databases (Kwon et al. 2020, Liang et al. 2024b), vector databases or meta-models. Both in

engineering and in subsequent phases of the product life cycle such as manufacturing (Zhou

et al. 2024a, Yahya et al. 2024) and service/maintenance (Xie et al. 2024), considerable research

efforts have been undertaken in recent years to demonstrate the suitability of knowledge

graphs for knowledge linking at an elevated meta-level. Product-related information that was

originally available in unstructured formats such as documentation, emails, or regulations can

now be stored in vector databases and made accessible to LLMs for RAG applications (Xu et al.

2025c). For end-to-end application of AI in the product development process, it is important to

provide system-wide context and formalize the product development process in such a way

that cross-domain processes, dependencies, and interactions become machine-readable. The

definition and stringent application of semantics and ontologies, as well as the transformation

of a document-centered development process toward MBSE (Zhang et al. 2025e), formalize

product development and are prerequisites for the scalable application of AI across domain

boundaries.

Figure 10: Pillars of Context Management in Engineering AI Landscapes

In the framework shown in Figure 3, context management serves as the brain of AI applications,

as it links product knowledge and maps the interdependencies and impact chains of artifacts

and other product-related information. Context management represents a control layer at

metadata level and aims to provide context and cause-effect relationships between artifacts

and product information, drastically improving the knowledge extraction, reasoning and

orchestration capabilities of LLMs. It is therefore recommended that the support of vector and

Linked & Traceable
Product Data

• Ensuring Machine-
Readability

• Unified terminology

• Semantics & Ontologies

Model-based Systems
Engineering

• System wide
Traceability Creation

• Formalization through
Metamodels

• Complexity
Management

• LLM-augmented
Knowledge Graph
Construction

• Graph Database

• Triples Generation

• Vector Embedding

• Feedback loops and
user interaction

• Unstructured Data
Handling

Retrieval-Augmented
Generation

Knowledge Graph

26 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

graph databases is considered when selecting the AI platform and corresponding storage

platforms (Harby & Zulkernine 2025). Figure 10 shows the pillars of context management in

engineering AI landscapes, which are explained in more detail below.

1. Knowledge Graphs: Knowledge graphs consist of nodes (entities) and edges (relations)

that structure knowledge in the form of subject-predicate-object triples (Liang et al.

2024a). They integrate information from various sources, semantically link related

concepts, and enable context-aware queries and inferences. Ontologies are often used

to formally define the meaning of nodes and relations, allowing machines to interpret

the data (Zou 2020). While until a few years ago a lot of manual work was required by

experts to create domain-specific KGs (Hur et al. 2021), generative approaches and

especially LLMs, are now able to process big data and automatically create (multimodal)

KGs based on heterogeneous data sources (Ibrahim et al. 2024). The construction of

KGs in engineering is particularly challenging, as domain knowledge such as

engineering principles or industry-specific best practices and regulations must be

embedded in the KG and the underlying data is stored in a wide variety of source

systems (Liang et al. 2024b, Liang et al. 2025). Furthermore, various measures must be

considered in the KG construction phase, such as efficiency (computing time required),

costs (number of tokens used) and KG quality (e.g. proportion of isolated entities) (Xiao

et al. 2025).

Figure 11 shows an exemplary LLM-augmented KG construction and retrieval pipeline as

well as a simplified KG specialized for engineering. KG construction is based on

heterogeneous data sources that draw on artifacts from the engineering toolchain, but

also use additional information from documentation, regulations, internal wikis and

many other data sources. Well-maintained metadata that documents the validity of the

extracted information and artifacts for specific products, configurations and variants is

fundamental to extract valid relations for the KG construction. In the first step of the KG

construction pipeline, data is transformed, and relevant text sections are extracted. The

extracted text sections are then further processed by an LLM in the LLM-augmented KG

preparation step, which has the task of recognizing and extracting relevant entities and

relations between entities and merging them into valid triples. This creates the

simplified product KG shown in Figure 11, which depicts the relationships between

engineering artifacts and further product information.

27 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

Figure 11: KG Construction and Retrieval Workflow based on Hoang et al. (2025) adapted to an
Engineering Application

The constructed KG is then stored in a database. Relational databases are suitable for

small graphs (e.g. Hoang et al. 2025), however when memory requirements increase,

the switch to graph databases is unavoidable for performance reasons (Ibrahim et al.

2024). After the graph has been constructed, it is transformed into a vector embedding,

making it accessible for LLMs and similarity checks with prompts. If an engineer sends

a prompt to the LLM, the content of the KG is compared with the prompt, and the

relevance of triplets is evaluated based on their similarity to the prompt. Triplets with

high relevance are added to the prompt to provide the LLM with product and domain-

specific context. Such an approach is called GraphRAG (Han et al. 2024b, Zhu et al.

2025, Peng et al. 2024) and is particularly effective for highly specific tasks where the

LLMs need to draw on (domain-specific engineering) knowledge that was not provided

to them during the training process (Zhang et al. 2025c). Different measures must also

be considered for the retrieval pipeline. The most important measures are the time to

create the vector embedding (indexing time) and the average retrieval time (Xiao et al.

2025).

Another promising approach is the use of DL algorithms to evaluate the relevance of

triplets or combinations of triplets. GNN-RAG, i.e. the use of GNNs to identify highly

relevant subgraphs and triplet combinations, enables LLMs to provide advanced

reasoning capabilities (Mavromatis & Karypis 2024). The integration of agents that

interact with KGs multiple times and optimize their actions based on reinforcement

learning to retrieve the most suitable information from the KG (Luo et al. 2025) is a

Product Knowledge Graph

Data
Sources

Knowledge Graph Construction Pipeline

Engineering
Tools

Documents

Regulations

Internal
Wikis

Internet

Graph Construction

Pre
Processing

Transform
Data

Extract Text

LLM-augmented
Graph Preparation

Entity Recognition

Relation Extraction

Triples Generation

Requirement

Function

CAD
Model

Legal
Regulation

Simulation

Test Case

Test Script

Configuration

fulfilledby realizedby

derived from is part of is part of

is input to

Releasevalidated by

implemented
by

included
in

Knowledge Graph Retrieval Pipeline

Graph Embedding

Retrieval
Ranking

Similarity
Check

KG Vector
Embedding

Transform
KG

Prompt
Extension

Provide
Required

Information

Engineer

LLM

“List all requirements
with legal relevance.”

“List all requirements with legal relevance. Requirement XX-02 is derived from Regulation
YY-04. Regulation YY-04 is part of standard XY.2 …”

“Here is a list with all legal relevant requirements:
Requirement | Regulation | Norm / Standard
1. Requirement XX-02 | Regulation YY-04 | Standard XY.2
2. … | … | … “

LLM Input LLM Output

Prompt

28 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

further interesting research field. In the future, this can be a key for complex Product

KGs that need to map different products, configurations, variants and the interaction of

mechanics, hardware and software to identify complex relationships between artifacts

and other product information, allowing conclusions to be drawn.

In addition to automated construction and retrieval, dynamic adaptations of KGs are an

important feature to qualify for scalable use in engineering. This includes managing the

KG and its vector embeddings in AIOps pipelines, which are dynamically adjusted as

new engineering artifacts are created, and new product-related information is added

(Liang et al. 2025). In particular, the introduction of Temporal KGs, which give

information recorded in the KG a temporal reference and thus ensure the temporal

validity of information (Choi & Jung 2025, Wang et al. 2024b), can be seen as a way of

mapping change and configuration management processes in the future. The need for

dynamic KG updates has already been recognized in the manufacturing sector (Wan et

al. 2024) and prototypically implemented using the example of physically decoupled,

collaborative robots (Bai et al. 2024). Another research focus is the continuous

evaluation of the quality of KGs as well as the quantification of incompleteness and

uncertainty. Existing (engineering) data is imprecise, incomplete and ambiguous, which

is why these properties are also transferred to KGs. In addition, retrievals from KGs are

also subject to uncertainty, which is why Mishra et al. (2024) call for the integration of

uncertainty modules in KGs that highlight incomplete data areas, quantify knowledge

gaps and then dynamically adapt the graph. The continuous assessment of

uncertainties in retrievals from KG is also currently the subject of research (Ni et al.

2025a) and should be considered in future implementations in the monitoring layer of

the AIOps pipeline.

2. Retrieval-Augmented Generation: To support RAG use cases, lakehouses are evolving

to incorporate vector databases, which require high responsiveness and contextual

Industry Insights into Fixed Entity Architecture
for GraphRAG solutions

Irina Adamchic

GenAI Expert & Graph

Architect

Accenture

Bernhard Wieland

GenAI Expert

Accenture

In developing performance optimized knowledge-based AI solutions, the initial
approach utilized the LLMs based GraphRAG technique, specifically Microsoft
GraphRAG. This approach demanded considerable effort to construct a graph,
particularly with extensive data sets. It heavily relied on LLMs, lacked integration
with domain ontology, and required substantial deduplication and post-
processing. The main challenge was to devise a more cost-efficient, simpler, and
production-friendly method that also improved domain comprehension.

The proposed method, named Fixed Entity Architecture (FEA), merges standard
RAG with domain ontology. FEA employs a layered graph structure, where data
layers are logically separated. While GraphRAG excels as a standard RAG
approach by its nature, FEA simplifies the construction and utilization of graphs for
specific GenAI applications. An extension of FEA, called NLP-driven GraphRAG,
supports building layered graphs even in the absence of a predefined ontology. This
involves text chunking similar to standard RAG, but with entities extracted and
linked through triplets, thereby enhancing the traditional RAG model by
incorporating entity relationships and logical connections.

The adoption of FEA resulted in a more robust and easier-to-develop graphs and
query systems, improved domain understanding, and improved RAG performance
through entity linkage and business domain logic. Feedback from implemented
solutions showed notable gains in both efficiency and quality. Key takeaways
highlighted the value of combining domain ontology with standard RAG methods
and the effectiveness of NLP-driven GraphRAG in advancing the RAG framework.

29 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

integrity. RAG's strength lies in making data accessible to AI systems that, just a few

years ago, were largely not processable. Similar to the construction of KGs, unstructured

data such as text is transformed into embeddings for RAG applications, which are then

stored in vector databases. Using similarity searches between the prompt and the

contents of the vector database, particular relevant information can then be extracted

and incorporated into the prompt, providing LLMs and agents with context-rich

information. This significantly increases the quality of LLM responses and prevents

hallucinations (Zhao et al. 2024). Design decisions such as chunk size and prompt

templating significantly affect retrieval quality (Li et al. 2025b), while system integration

and failure point identification (Barnett et al. 2024) remain critical for operational

reliability. Embedding RAG workflows in AIOps pipelines and connecting them to

internal and external data sources ensures that lakehouses serve not only as

repositories, but also as enablers of intelligent, context-aware applications.

RAG applications are now already common practice in the development of industrial AI

use cases and scientific publications related to engineering. Numerous engineering AI

publications have already demonstrated that providing domain-specific context via RAG

and GraphRAG applications leads to more performant LLM applications. Examples span

all engineering domains, such as requirements management (Masoudifard et al. 2024,

Hey et al. 2025), architecture design (Hanke et al. 2025), CAD design (Xiong et al. 2025),

software engineering (Strittmatter 2025), simulations (Pandey et al. 2025, Feng et al.

2025), test case generation (Wang et al. 2025a), product documentation (Tao et al. 2024,

Pu et al. 2024), and compliance assurance (Sovrano et al. 2025).

3. Model-based Systems Engineering: MBSE represents the paradigm shift from

document-centric engineering toward formalized, model-based approaches by

introducing structured and standardized system models that enhance consistency,

communication, and collaboration across domains and life cycle phases. Unlike

traditional documentation, MBSE provides a unified modeling environment in which

requirements, logical and physical architectures, simulation behaviors, and

optimization objectives are coherently represented and continuously refined across

domain boundaries (Zhang et al. 2025e). A major milestone in this evolution is the

emergence of SysML v2, which introduces a new metamodel and textual notation

designed for improved semantic expressiveness and interoperability across

engineering tools (Vaicenavičius et al. 2025). SysML v2’s standardized API enables

seamless data exchange and interaction between domain-specific tools and the system

model itself. This standardization allows external applications to query, update, or

extend the SysML metamodel, creating the foundation for machine-readability and AI

compatibility.

Building upon this foundation, MBSE establishes a central, system-wide metamodel that

links metadata to domain-specific specifications. This integration allows for continuous

verification and validation (Cibrian et al. 2025), as well as automated compatibility

checks throughout the engineering lifecycle. Such model-centric architecture paves the

way for AI and agentic AI systems to gain a holistic understanding of the overall system.

These AI agents can interpret system structures, processes, and boundary conditions,

and autonomously delegate well-defined development tasks to subordinate agents

operating within domain-specific tools or using domain-specific languages (see also

Section Outlook). MBSE therefore provides a system-wide context that will enable AI

applications to understand and explore the overall system in greater depth before

development tasks can be orchestrated at subordinate system levels.

30 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

The integration of AI into MBSE has emerged as a research focus in recent years (Poulsen

et al. 2025). Zhang et al. (2025f) outline a research roadmap that illustrates how GenAI

can support model development, model management, and model comprehension. Early

studies demonstrate that LLMs are already capable of generating SysML v2 models

directly from textual descriptions, thereby automating parts of the system modeling

process (Longshore et al. 2024; Johns et al. 2024). These developments highlight the

potential of combining formalized system modeling with AI-driven reasoning to

accelerate system design, ensure traceability, and establish the digital foundation for

intelligent, adaptive engineering ecosystems.

4. Linked and Traceable Product Data: A significant portion of time is spent by engineers

searching for product information relevant to their tasks (Chandrasegaran et al. 2013),

which is why the demand for linked and traceable product data is higher than ever.

Although modern PLM software offers sophisticated solutions for PDM (Eigner 2021), the

solutions reach their limits as soon as the number of variants and configurations in the

product portfolio becomes unmanageable (Failla et al. 2025) and information that is not

managed in the PLM system needs to be embedded. For this reason, linking product

data and creating traceability across the entire product development process or even

product life cycle in the sense of a digital thread is of fundamental importance and offers

immense efficiency gains. This requires ontologies and semantics that describe the

interaction of product data in a standardized way (Failla et al. 2025) and form the basis

for the construction of KGs (Ryś et al. 2024).

KGs are already being used in engineering for this purpose, as evidenced by several

publications. While some authors propose KGs for domain-specific linking and

traceability tasks, e.g. the similarity assessment of CAD models within large CAD

repositories (Bharadwaj & Starly 2022), functional classification of components (Ferrero

et al. 2022), knowledge retrieval from existing design data for product ideation in early

design phases (Cong et al. 2025), conversion of standards into machine-readable

formats (Luttmer et al. 2021) or model management (Ryś et al. 2024) and model

versioning (Wu et al. 2025) in systems engineering, other authors propose cross-domain

applications. Hedberg et al. (2020) propose a lifecycle handler system that assigns an

ID to each artifact across domains and links them together via a KG. The importance of

informative metadata for each artifact is emphasized to describe the content of the

artifacts in detail and identify links to other artifacts. Kwon et al. (2020) show how they

link design (STEP format) and inspection data (QIF format) via a KG and thus establish

traceability between product design and quality assurance. Kasper et al. (2024) propose

a KG-supported concept for linking data from all phases of the product life cycle, which

can accelerate cross-domain change and quality management processes in the future

(Kommineni et al. 2024). We assume that scalable solutions will be developed in the

coming years that address cross-domain data interconnection and will be based on the

approaches described (KG, RAG, MBSE).

The need to link product data across the entire product life cycle has been known for years.

Nevertheless, scalable solutions that link data across domains and tools have not been

available. With the emergence of LLM-augmented KGs and associated retrieval and reasoning

capabilities, this is likely to change in the coming years (Liang et al. 2025). The prerequisites for

exploiting this potential are the creation of clear ontologies, (automated) creation and

maintenance of metadata and the development of expertise in KG/RAG construction, retrieval,

maintenance and uncertainty management. In this way, cross-domain development processes

in particular, such as change, configuration and release management, can be massively

accelerated and automated in the future. Emerging fields of research such as agentic context

31 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

engineering, i.e., the integration of agents to retrieve the optimal context from heterogeneous

data sources (Zhang et al. 2025i), may further increase the performance of AI applications in

the future and show great potential, especially for domain-specific tasks.

05 Federated Governance
AI is entering product development at speed, drafting requirements, generating design

variants, accelerating simulation setups, and assisting integration and release (Paliwal et al.

2024). Yet organisations that scale beyond pilots share one trait: they treat governance as an

engineering discipline, not just another review meeting. In fragmented tool landscapes and

heterogeneous product domains, centralised control becomes a bottleneck, while laissez-faire

creates risk, duplication, and drift. A federated governance model resolves this tension by

combining autonomy for domain teams with shared, automated guardrails (Williams &

Karahanna 2013).

Governance is the rule set of policies, processes, roles, and metrics that keeps data and AI

assets aligned with business goals, regulation, and ethics (Otto 2011). In our framework, Data

Sovereignty, control over residency, access, and usage rights, is not a parallel construct but a

governance goal: a sovereign configuration of the overall system (von Scherenberg et al. 2024).

Sovereignty ensures that high-value data continues to flow while remaining compliant with

legal, ethical, and strategic constraints, binding datasets, models, and processes to

provenance, entitlements, and declared purposes through enforceable, machine-readable

policies. Figure 12 illustrates key elements of federated AI governance in product development

and other AI systems.

Figure 12: Pillars of Federated Governance in Engineering AI Landscapes

Federated governance spans the full product-development stack, as shown in Figure 3. At the

core lies the context management, which captures lineage, usage, and audit evidence, serving

as the metadata backbone for Data Governance. Here, sovereignty profiles and traceability

ensure that every dataset, requirement, simulation, or release artefact is auditable and reusable.

Data Governance

• Data quality and
semantics

• Shared vocabulary /
ontologies

• Read / write scopes for
agentic AI

Model & Use-Case Governance

and Regulatory Compliance

• Model lifecycle
oversight

• End-to-end audit trails

• Continuous oversight
for agentic AI

• Human Accountability

• Domain teams own
end-to-end delivery

• Machine roles for
agentic AI

• Scaling compliance
guardrails

• Ensure jurisdictional and
contractual boundaries
are respected by design

• Sandboxing agentic AI

Platform Governance/

Access & Usage

Organisational &

Decision Governance

32 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

Surrounding this core is the AI Platform, where Platform Governance enforces compliance by

design through shared runtimes, orchestration, observability, and policy enforcement points.

On top sits the Interoperability layer, providing the interfaces, APIs and communication

protocols that link domains. This layer is shaped by Model & Use-Case Governance, which

defines how prompts, models, and evaluations are integrated, monitored, and approved while

remaining compliant with sovereignty constraints. The next layer Data Quality in the

engineering toolchain is where domain teams create and curate data products, designs, and

simulations, linking them back into the context modules under governance guardrails. Finally,

the outermost layer of Federated Governance reflects Organisational & Decision Governance,

the human system of roles, committees, and accountability that binds the stack together,

ensuring that local autonomy across tools, data, and models remains aligned with enterprise-

wide sovereignty, compliance, and business objectives. To operationalise this model, federated

governance unfolds across four interdependent areas:

1. Data Governance: Data governance forms the foundation of any GenAI system by

ensuring that information entering the AI lifecycle is reliable, traceable, and compliant

with sovereignty rules. GenAI quality is bounded by data quality and semantics

(Mohammed et al. 2025), thus, data governance encompasses the management of data

quality, semantic consistency, classification, and retention, ensuring that only the

necessary and permitted metadata are exposed to higher system layers. By embedding

lineage and usage evidence in the knowledge graph, data governance establishes

transparency and accountability at source. Sovereignty is realised through dataset

profiles that encode access rights, residency, and sharing restrictions, automatically

enforced through policy mechanisms. As GenAI becomes more agentic, data

governance extends its scope to include autonomous data consumers and producers,

defining their permissions and logging every access event as a traceable action. In

doing so, it safeguards intellectual property, prevents data leakage, and enables

responsible AI development across distributed domains.

2. Model & Use-Case Governance and Regulatory Compliance: Model and use-case

governance ensures that GenAI models remain effective, compliant, and auditable

throughout their lifecycle. It manages the intake and prioritisation of use cases, defines

model cards and versioning schemes, and implements evaluation and monitoring for

performance, bias, and drift. Risk tiering aligns with the EU AI Act, while Responsible AI

principles (Accenture 2024)—human by design, fairness, transparency, explainability,

safety, accountability, compliance, privacy, and sustainability—are operationalised

through approval and monitoring processes. Sovereignty is maintained by checking

prompts, fine-tuning datasets, and RAG pipelines against sovereignty profiles to ensure

that every artefact used in model training or inference respects declared usage rights.

End-to-end audit trails document who used what data for which model, when, and for

what purpose. As AI systems evolve toward agentic autonomy, model governance

extends to continuous supervision of agents’ behaviours, defining approved roles,

enforcing decision boundaries, and ensuring human-in-the-loop checkpoints with rapid

rollback mechanisms (Kolt 2025). This way, it guarantees that innovation and autonomy

coexist with accountability and compliance

3. Platform Governance and Access & Usage Management: Platform governance

translates policy into infrastructure, embedding compliance and sovereignty

enforcement directly into the technical backbone of AI operations. It defines and

manages shared runtimes, container orchestration, vector databases, secrets

management, observability, and policy-enforcement points at both build-time and run-

33 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

time. Through policy-as-code, it blocks non-compliant builds or deployments and

enforces cost transparency, SLOs, and golden pipelines to ensure operational reliability.

Sovereignty is preserved by enforcing data residency and segmentation through

regional clusters and runtime isolation, ensuring that jurisdictional and contractual

boundaries are respected by design. All access and usage are logged continuously,

providing a verifiable record of platform activity. As AI becomes agentic, platform

governance must include sandboxing, scoped authentication tokens, rate-limiting, and

agent-aware observability—tracking decision traces and tool invocation logs to prevent

privilege escalation and unauthorised lateral movement. By codifying compliance

within the infrastructure itself, platform governance ensures that scalability and security

advance hand in hand (e.g., Hurni et al., 2020).

4. Organisational & Decision Governance: Organisational and decision governance

establishes the human and procedural scaffolding that ensures accountability,

coherence, and ethical alignment across federated teams. It defines clear roles,

responsibilities, and RACIs, creates lightweight but effective change-control processes,

and introduces oversight bodies such as AI steering committees and ethics boards to

manage high-risk approvals and cross-domain standards. Post-incident reviews, replay

sessions, and continuous training in Responsible AI, privacy, and secure development

maintain organisational readiness and trust. Sovereignty becomes a leadership KPI, with

compliance rates, audit outcomes, and data-quality metrics linked to performance

incentives. As AI agents increasingly collaborate with humans, organisational

governance expands its scope to define machine roles and supervision rules—clarifying

when must humans approve, override, or intervene and how escalations are handled

when agents face uncertainty. Through this hybrid accountability model, organisational

governance anchors the system in human responsibility while enabling autonomy at

scale.

Figure 13: Governance Fabric for AI in engineering landscapes

Organisational Governance

Data Sovereignty

Model / Use Case
Development

Data Layer AI Platform

</>

Data Governance Model Governance Platform Governance

Human
Accountability

Machine roles
for agentic AI

Domain teams own
end-to-end delivery

34 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

The areas form a single governance fabric as depicted in Figure 13. Data governance supplies

reliable, sovereignty-bound inputs to model governance, which sets policy requirements and

risk posture that platform governance enforces automatically at build- and run-time.

Organisational governance provides accountability and fast decisions when tensions arise (e.g.,

when a sovereignty profile restricts training, or a platform policy blocks deployment). The

Product Knowledge Graph is the shared backbone, linking lineage, model usage, and platform

logs including agent actions into one auditable view. These interconnections keep domain

autonomy aligned with enterprise sovereignty and compliance objectives.

In industrial applications, where complexity, regulation, and global competition converge,

governance across these four areas is infrastructure, not bureaucracy, the fabric that makes AI

safe, scalable, and competitive. Without data governance, trust in inputs collapses; without

model governance, bias and drift erode value; without platform governance, scaling breaks

under complexity; without organisational governance, accountability diffuses, and sovereignty

remains aspirational. Treating governance as an engineering discipline, which is automated,

federated, sovereignty-driven, and agent-aware, is a competitive prerequisite for the GenAI

economy.

Industry Insights into Model Governance

Marcel Altendeitering

Head of Department

Fraunhofer ISST

Tobias Guggenberger

Group Lead

Fraunhofer ISST

The EU AI Act distinguishes between different types of AI systems based on their
risk level. High-risk AI systems (e.g., systems based on personal data or targeting
critical infrastructure) are required to perform rigorous data governance activities
to provide transparency and minimize risks. These requirements include ensuring
that training, validation, and test data sets are relevant and accurate. For instance,
they should avoid bias in the data set.

To simplify and support the data governance activities required by the EU AI Act,
we utilized AI methods. Specifically, we implemented solutions for automatically
generating and analyzing metadata to enhance data lineage and track the origin of
data sets. Additionally, we implemented algorithms to detect potential biases
(e.g., using techniques for identifying feature importance).

As part of our use case, we found that AI has great potential for addressing the
data governance requirements posed by the EU AI Act. By combining multiple
solutions for different governance aspects, the developers of high-risk AI systems
can reduce the efforts for implementation.

35 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

Stages of AI Readiness in Engineering

The framework described in the previous Section (see Figure 3) represents the foundations and

prerequisites for enabling scalable AI applications in engineering. To provide companies with

guidelines for enabling AI in their product development processes, this chapter presents a

maturity model that rates the maturity level of use cases with respect to the type of system

integration.

Figure 14: Horizontal and Vertical Integration in Engineering AI Use Case Implementations

Figure 14 provides an (illustrative, non-exhaustive) overview of the creation of engineering

artifacts throughout the product development process. A distinction is made between two

types of integration in systems engineering. Vertical integration describes the successive

processing of artifacts within a domain (e.g., from unstructured requirements to system

requirement specifications to detailed hierarchical requirement models), while horizontal

integration describes the linking and traceability of artifacts across domain boundaries (Eigner

2021). These properties can also be transferred to AI use case implementations. Vertical use

cases only access data from the domain that also uses the results of the use case. Horizontal

applications access data from other domains, which requires traceability of artifacts throughout

the product development process. To assess the maturity of enterprise AI applications, the

automation levels of autonomous driving are proposed in the literature (SAE 2014). These divide

the automation levels for AI applications in engineering into six discrete stages, ranging from

fully manual engineering without AI use (level 0) to fully autonomous AI engineering (level 5)

(Bernijazov et al. 2025).

Figure 15 shows the different levels for vertical (top) and horizontal (bottom) AI integrations and

describes each level. The maturity levels of vertical integration refer to the degree of autonomy

of AI applications regarding the performance of engineering tasks within a development

domain. In contrast, the maturity levels of horizontal integrations refer to the degree of

autonomy regarding the networking and traceability of artifacts from different domains. While

V
e

rt
ic

a
l

In
te

g
ra

ti
o

n
(S

in
g

le
-D

o
m

a
in

 A
I

Im
p

le
m

e
n

ta
ti

o
n

)

Horizontal Integration
(Cross-Domain AI Implementation)

System Req.
Specification

Requirements
Model

Unstructured
Requirements

Customer Req.
Specification

Requirement

Physical
Architecture

Behavioral
Architecture

Functional
Architecture

Logical
Architecture

Architecture

Simulation
Parameters

Simulation
Results

Simulation
Mesh

Material
Data

Simulation

Test Logs

Test
Documentation

Test Plan

Test Cases

Test

Compliance
Documentation

Technical
Documentation

Product
Configuration

Release
Notes

Release

PCB
Layout

Electronic
BOM

E/E
Architecture

Circuit
Diagram

Design

3D CAD
Part Models

Mechanical
BOM

Sketches &
Concept Models

Assembly
Models

Mechanical E/E

Source
Code

Flash &
Calibration Data

Software
Architecture

Build
Configuration

Software

36 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

maturity level 0 does not involve any application of AI, the degree of autonomy increases

successively with each maturity level until, at level 5, AI can perform domain-internal (vertical)

and cross-domain (horizontal) tasks completely autonomously.

Figure 15: Stages of Vertical and Horizontal AI Readiness in Engineering

The automation levels serve as a basis for assessing the maturity of the use cases in the

following Section. Various publications from the literature are analyzed and classified according

to their vertical and horizontal maturity levels.

Level 0

Manual

Engineering

Level 1

AI-Assisted

Engineering

Level 2

AI-Supported

Decision Making

Level 3

Semi-Autonomous

Engineering

Level 4

Autonomous

Task Execution

Level 5

Autonomous

AI-Engineering

Domain

processes

performed

manually

without AI.

AI provides

basic

suggestions,

engineers

integrate.

AI provides

additional

information,

engineers

utilize.

No AI

involvement

AI assists

specific

subtasks

AI supports

specific

decision making

AI automates

development

subtasks

AI takes over

complete

domain tasks

AI carries out

domain

processes

autonomously

AI provides

multiple

solutions,

engineers

select and

refine.

AI provides

optimized

solutions,

engineers

refine.

AI provides

E2E solution,

engineers

approve.

V
e

rt
ic

a
l

In
te

g
ra

ti
o

n
(S

in
g

le
-D

o
m

a
in

)

Horizontal Integration
(Cross-Domain)

No AI

involvement

AI assists data

linking

AI recommends

data linking and

development

activities

AI automates

data linking and

creates specific

artifacts

AI links and

generates

specific data

across domains

AI links data

across

domains

autonomously

Cross-domain

development is

managed fully

manual.

Affected data

is partly

highlighted,

engineers

assess

impacts.

Affected data is

fully highlighted,

engineers refine

data linking.

Affected data is

automatically

linked,

engineers

decide on

(automated)

data creation.

Affected data

is linked

automatically,

engineers

supervise

impact & data

generation.

Affected data

is linked in

real-time,

engineers

supervise E2E

development.

Level 0

Manual

Engineering

Level 1

AI-Assisted

Engineering

Level 2

AI-Supported

Decision Making

Level 3

Semi-Autonomous

Engineering

Level 4

Autonomous

Task Execution

Level 5

Autonomous

AI-Engineering

37 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

Use Cases

38 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

In this Section, we present several AI use cases across the six development domains in the V-

model as well as cross-domain use cases. For each of the six development domains, three

promising use case classes are presented that exemplify the current state of the art as reflected

in the scientific literature. These examples provide a concise overview of the application of AI

in the respective development domain and are intended to support C-level executives and

engineers in identifying high-priority AI applications. In addition, key challenges are analyzed

that currently hinder further increases in the automation levels, as defined by the maturity

model shown in Figure 15. The selection of use cases does not claim to be exhaustive but instead

deliberately focuses on high-value approaches that have already led to significant progress and

innovation in literature.5 The use cases are summarized at the end of this Section, cross-domain

applications are presented, and they are evaluated according to their vertical and horizontal

maturity levels in line with the previous sections (see Figure 15).

Figure 16 illustrates the V-model for the development of mechatronic and cyber-physical

systems according to VDI (2021) and provides an overview of the engineering domains

introduced in the following Subsections.

Figure 16: Overview of the six engineering development domains of the V-model

5 Further engineering use case proposals and summarizations are presented by Bleisinger &
Eigner (2025), Steffen et al. (2025) and Liang et al. (2025).

Mechanics

E/E

Software

Modelling & Simulation

Domain 4: System Simulation

Requirement

Arch.

Product Design

Domain 3: System Design

Test

Release

Domain 1:
Requirement
Engineering

Domain 2:
Architecture

Design

Domain 6: Compliance &
Documentation

Domain 5:
System

Testing / V&V

39 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

Requirement Engineering

The integration of AI, and specifically LLMs, into requirement engineering is transforming how

engineering teams elicit, specify, and refine requirements throughout the product development

lifecycle (Arora et al. 2024a). Traditionally a manual and therefore error-prone process,

requirement engineering can benefit in the future from AI's capability to process vast volumes

of unstructured and semi-structured information (Cheng et al. 2024).

AI models are capable of ingesting diverse inputs such as natural language requirements,

technical documentation, programming code, examples, and sketches (Hemmat et al. 2025).

From these, they can generate outputs that include (software) requirements and specifications,

code and pseudocode, and models such as UML or SysML diagrams. The key benefits of

applying AI in requirement engineering include enhanced quality and consistency of

requirements, accelerated elicitation and management processes, improved traceability and

connectivity between requirements, and the generation of artifacts that support downstream

engineering tasks (Hemmat et al. 2025).

AI applications in requirements engineering can be grouped into three main categories of tasks

as structured similarly by Hemmat et al. (2025) for hardware requirements and Norheim et al.

(2024) for software requirements:

• Requirement Generation, where AI assists in drafting consistent and structured

requirements and requirement models from unstructured inputs, such as stakeholder

inputs or regulatory documents,

• Requirement Optimization, which focuses on evaluating and optimizing requirements

for clarity, completeness, consistency, and compliance with formal language standards

or domain-specific guidelines,

• Requirement Analysis, where AI is used to track dependencies, identify conflicts, and

align requirements with each other and with downstream artifacts, such as MBSE

models, functional and logical models or test cases.

Requirement Generation

One of the most immediate applications of GenAI is in the generation of requirements from

unstructured stakeholder input, such as interviews, notes, or informal descriptions. By

leveraging LLMs, this input can be transformed into well-structured, formalized requirement

statements that align with engineering standards and stakeholder demands. This not only

accelerates the elicitation process but also reduces the risk of overlooking critical stakeholder

needs. Furthermore, GenAI can iteratively refine initial drafts through interactive dialogues,

allowing stakeholders to clarify and validate requirements in real time. Ronanki et al. (2023)

demonstrate that LLMs like OpenAI’s ChatGPT are effective in eliciting functional and non-

functional requirements through conversational prompts. Similarly, Nouri et al. (2024) show that

safety requirement elicitation for autonomous driving systems can be significantly accelerated

using LLMs, providing a structured and complete set of requirements faster than traditional

manual methods. Voria et al. (2025) introduce RECOVER, a pipeline that structures stakeholder

dialogue and drafts system requirements using Llama 2.

40 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

Requirement Optimization

AI supports optimization and quality assurance by detecting issues like ambiguity, redundancy,

inconsistency, and syntactic errors. These models can evaluate requirements against

predefined quality criteria and suggest rewordings that improve clarity, verifiability, and

completeness. This leads to fewer misunderstandings and rework in later development phases.

Additionally, AI can be used as a first-pass reviewer, enabling engineers to focus their manual

reviews on higher-level content validation rather than basic linguistic or structural issues. Bashir

et al. (2025) demonstrate how LLMs can be used to detect and explain ambiguities in

requirements from the railway industry. Lubos et al. (2024) report that LLMs can reliably identify

quality flaws in software requirements and suggest alternatives that are more precise, verifiable,

and appropriate. Fantechi et al. (2023) further demonstrate that LLMs can detect internal

inconsistencies across requirement sets, expediting the refinement process. Saleem et al.

(2025) show that prompt-engineered LLMs can effectively classify requirements into functional

and non-functional categories, improving consistency and traceability. Gärtner & Göhlich

(2024) present an LLM-based approach to optimize automotive requirements regarding

ambiguity, redundancy, consistency, clarity and compliance. However, these studies stress the

necessity of expert validation and human-in-the-loop approaches to ensure reliability.

Requirement Analysis

Beyond textual interpretation, AI facilitates requirement traceability creation by extracting

knowledge from requirements and making it usable for downstream engineering tasks. This

includes identifying relationships between requirements, ensuring compliance with standards

and regulations, categorizing them, and linking them to relevant models, design elements or

test cases. As a result, complex requirement sets become more navigable across large-scale

projects. Moreover, the generation of structured representations, such as knowledge graphs,

supports traceability and consistency across different engineering domains and toolchains. Liu

et al. (2025) introduce a method for building knowledge graphs from aerospace requirements

using LLMs, which helps improve manageability and comprehension of complex systems.

Similarly, Tikayat Ray et al. (2024) demonstrate how NLP algorithms can understand and map

interdependencies between requirements in the aerospace domain. Hassine (2024) expands on

this by showing how LLMs can be used to create traceability links between requirements and

goal models. Using the example of software requirements, Masoudifard et al. (2024) show how

specifications from regulations and standards can be considered to align compliance with

corresponding software requirements.

Further publications, e.g. Fuchß et al. (2025a & 2025b), Niu et al. (2025), Hey et al. (2024 &

2025), examine the possibilities of LLMs for automated traceability creation and validation

between requirements and other engineering artifacts. This includes

• the automated creation of system architectures in the context of MBSE (Akundi et al.

2024, Meng & Ban 2024, Bonner et al. 2024),

• the accelerated design of CAD models (Li et al. 2025a),

• the generation of simulation setups and parameters (Lebioda et al. 2025),

• the generation of software code (Han et al. 2024a)

• as well as the automated creation, execution and verification of test cases (Alagarsamy

et al. 2024, Reinpold et al. 2024, Ferrari & Spoletini 2025).

41 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

These publications underline both the growing interest in research and the industrial relevance

of requirement traceability along the product structure and along the product development

process.

Despite these promising use cases, several challenges currently constrain the widespread AI

adoption in requirements management.

• Data-related challenges include the limited availability of requirement-specific

datasets, inconsistent annotation standards, and inadequately defined requirement

engineering use cases (Norheim et al. 2024). These gaps hinder model training,

benchmarking, and reliable evaluation across domains.

• Methodological and organizational challenges include the development of new

requirement engineering practices to incorporate AI tools, explainability of AI-

generated outputs, and the need for human-centric evaluation of requirements (Habiba

et al. 2024). Additionally, the misalignment between AI developers and engineering end-

users introduces further complexity in tool integration and practical application.

• Technical challenges, as noted by Hemmat et al. (2025), revolve around ensuring the

completeness and quality of AI outputs, handling code and test generation effectively,

managing input prompt design, and maintaining structured formatting. These issues

directly impact the usability and trustworthiness of AI-generated requirements artifacts.

To address these challenges, dedicated research efforts and the development of industrial

applications are needed. Methodological and organizational challenges require new

approaches to effectively integrate GenAI into requirements engineering. Initial contributions

in this area include the framework proposed by Ahmad et al. (2023) for human-centered AI-

based requirements engineering, which emphasizes collaboration between engineers and AI

systems. Complementing this, Vogelsang and Fischbach (2025) provide practical guidelines for

applying AI to requirements engineering tasks, covering prompt design strategies, quality

validation methods, and approaches for integration into existing development workflows.

If these challenges are overcome, GenAI can significantly increase the degree of automation in

requirements engineering. Figure 17 shows the maturity levels of automated requirements

management based on the automation levels.

Figure 17: Vertical automation levels in AI-based requirements engineering applications

Level 0

Manual Req.

Tracker

Level 1

AI-Requirement

Assistant

Level 2

AI-Requirement

Decision Supporter

Level 3

AI Requirement

Processor

Level 4

AI Requirement

Manager

Level 5

Autonomous Req.

Management

Requirement

Mgmt.

activities are

performed

fully manual.

AI supports

engineers in

formulating or

rephrasing

requirements.

AI provides

insights in

assessing

completeness

or identifying

ambiguities.

No AI

involvement

AI assists

specific

subtasks

AI supports

specific

decision making

AI automates

development

subtasks

AI takes over

complete

domain tasks

AI carries out

domain

processes

autonomously

AI classifies

requirement

clusters and

provides

templates for

req. models.

AI generates

compliant,

consistent

and traceable

requirements.

AI generates

and

automatically

adapts

requirement

models.

42 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

Industry Insights into Requirements Engineering
Automotive suppliers often receive many customer input documents per project with
large volumes of text, ranging from 50 to 300+ pages of structured and unstructured text
across multiple files that must be analyzed to extract and classify requirements.
Normally, this responsibility is tasked to experienced systems engineers who manually
read, identify, categorize, and map relevant requirements into the supplier’s product
hierarchy. Human engineers must read between the lines to identify requirements
without keywords, or requirements irrelevant to the software domain such as those
about paint composition. This process is not only time-consuming and mentally taxing
but can also be prone to human error and inconsistencies if several engineers are
working in silos. In one past client case, we estimated the effort required to be three
engineers working full-time over three months to complete a single requirements input
package.

To address these challenges, the Accenture team has developed an agentic AI
approach leveraging Generative AI (GenAI) techniques built upon Natural Language
Processing (NLP) and reasoning models to parse input documents, identify both new
and duplicate requirements from an existing database, group related requirements, and
flag requirements needing updates or clarification based on the newly extracted input
requirements. We have prototyped this approach across several real-world datasets
and consistently demonstrated drastic time savings, reducing a task that once took
months to seconds. The results are also more consistent and less error-prone,
providing a dependable baseline for engineering teams to refine further through their
projects lifecycle.

A key insight from this use case was the implementation of the AI to reason beyond
traditional keyword-based automation features of leading requirements management
tools. The system now interprets project context against input document context,
understands the semantic structure of requirements, and performs reasoning to assess
relationships and redundancies which previously were only possible through human
judgment. This represents a paradigm shift in how engineering organizations can scale
quality and efficiency leading to decreased lead time to development with more time for
innovation.

Dr. Modar Horani

Managing Director

Accenture

Garrett Graham

Senior Principal

Accenture

43 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

Architecture

The development of system and discipline-specific architectures is evolving with the

integration of AI, which enables automation and augmentation of model creation,

transformation, and analysis. One of the key benefits of AI in architecture development is the

automated generation of system models from natural language requirements. AI and in

particular GenAI can interpret textual inputs and propose initial SysML diagrams or block

definitions, significantly accelerating the early stages of model creation and reducing manual

effort (Bader et al. 2024). This capability not only speeds up the modeling process and ensures

reusability of existing models but also helps ensure traceability from requirements to design

artifacts and consistency in system development (Bernijazov et al. 2025).

AI applications in architecture development and MBSE typically process a variety of inputs,

including requirements (Timperley et al. 2025), product design documentation (Zhang et al.

2025a), and detailed system specifications and architectures (Bernijazov et al. 2025). These

inputs are translated into outputs such as SysML-based system architectures, functional

models, and interconnected artifacts spanning across the engineering lifecycle. The

advantages are multifold. Mottaghian et al. (2025) report significant efficiency gains and time

savings, enhanced error reduction and quality assurance, the ability to establish and reuse

engineering knowledge as a strategic resource, and improved human-centricity by allowing

engineers to focus on higher-level, non-repetitive and creative tasks. According to Hovemann

et al. (2025), AI use cases in architecture development and MBSE can be classified into three

main categories:

• Model Generation focuses on the automated creation of system models from technical

inputs, such as natural language requirements, interface descriptions, or technical

documentations.

• Model Optimization focuses on AI evaluating and optimizing models for correctness,

completeness, and compliance with modelling standards or engineering guidelines.

• Model Traceability involves using AI to link architecture artifacts with each other as well

as with artifacts from other product development disciplines, and to retrieve

information from them.

Model Generation

The generation of functional and architectural models is by far the most studied and practically

implemented AI use case in the architecture domain. LLMs can automate the creation of SysML

models and other formal representations based on unstructured or semi-structured inputs. For

instance, Patel et al. (2024) and Timperley et al. (2025) both showcase how LLMs can derive

SysML model entities from textual requirements. While Patel et al. (2024) focus on extracting

model components from general unstructured requirement documents, Timperley et al. (2025)

demonstrate a more domain-specific transformation of functional requirements for spacecraft

systems into structured architectures consisting of functions, modes, and components.

Expanding into simulation and dynamic modeling, Zhang et al. (2025a) apply GenAI to generate

executable models that represent the continuous dynamic behavior of aircraft electrical

systems, starting from design documentation. A similar emphasis on structured model output

is found in the work of Johns et al. (2024), who integrate a LLM into CATIA Magic to automatically

generate conceptual SysML models for rocket systems within the design environment itself. In

the work of Von Heissen et al. (2024), a plugin for Cameo Systems Modeler is developed that

enables LLM-based generation of functional and logical architectures including SysML blocks,

44 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

interconnections, stereotypes, and diagrammatic representations for autonomous remote-

controlled cars. Lameh et al. (2025) extend the application of LLMs beyond SysML by

demonstrating the automated creation of feature models to support product line engineering,

thus addressing variability management in system families. Bouamra et al. (2025) present a

multi-agent system called SysTemp, that leverages LLMs to automatically generate SysML v2

models from natural language specifications, focusing on syntax correction and iterative

refinement to address the lack of training data and improve model quality in systems

engineering. Taken together, these studies illustrate the breadth of AI's potential in MBSE and

discipline-specfic architecture development, from generating functional architecture and

simulation models to create discipline-specific modeling artifacts, highlighting both the

versatility and growing maturity of AI-assisted system modeling approaches.

Model Optimization

The assessment and optimization of existing models as well as the generation of alternative

modeling variants is highly relevant in industry. AI holds significant promise in supporting

engineers by identifying structural gaps, highlighting inconsistencies, and suggesting

improvements based on learned modeling best practices. Moreover, it can assist in comparing

and ranking alternative model structures or architectures with respect to predefined system

goals, such as modularity, scalability, or fault tolerance. Such capabilities can help reduce

modeling errors early in the development process and enhance model maintainability over

time. In this context, Sultan & Apvrille (2024) present an AI-supported framework that leverages

LLMs to detect inconsistencies in SysML models. Even though the number of publications on

model optimization is not yet very high, we expect it to grow rapidly soon due to its high

relevance to practice and the recent introduction of the textual SysML v2 notation.

Model Analysis

Another emerging application is the analysis of system architectures, particularly creating

traceability across RFLPT artifacts and downstream design artifacts. As mentioned in the

Subsection on requirement engineering, linkings between requirements, architecture objects,

design drafts and test cases are crucial for end-to-end traceability along the product

development process and can be seen as the basis for a cross-domain AI application. For

example, Fuchß et al. (2025a) present an approach to link architecture documentation to

architecture models using a RAG-based LLM application. Wawrzik et al. (2025) present a

Knowledge Graph Generation Framework for Systems Engineering (KGG4SE), which

automatically generates and quality-checks knowledge graphs from diverse sources, integrate

them into MBSE tools, and thereby improve graph consistency, structure, and scalability.

Karagoz et al. (2024) introduce a graph-based approach transforming SysML models into KGs.

They apply a graph CNN to detect missing links, which addresses the problem of incomplete

knowledge in MBSE system models and improves robustness, reliability and efficiency of

complex system development. An AI-integrated framework for digital continuity and MBSE

improvements is proposed by Xu et al. (2025a), focusing on enabling continuous feedback from

early design and operational phases. Hanke et al. (2025) propose MBSE-Graph-RAG, a

conceptual framework, which integrates knowledge graphs with RAG to enhance MBSE

usability, accessibility, and automation by enabling natural language interaction, automated

system architecture generation, and improved collaboration.

Further publications deal with discipline-specific automation solutions for electronic (Li et al.

2025f, Blocklove et al. 2023) and software architecture design (Esposito et al. 2025, Schmid et

al. 2025).

Despite its promise, the application of AI in architecture development faces several challenges:

45 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

• Data limitations: There is a scarcity of structured, high-quality data specific to system

engineering and discipline-specific architecture development, which hinders model

training and generalization (Poulsen et al. 2025),

• Adoption barriers: Engineers require new skills to effectively use AI tools, including

prompt engineering, model validation and evaluation. There is a steep learning curve

and cultural resistance in some organizations.

• Need for supervision: While LLMs can generate comprehensive models, human

supervision remains essential to ensure correctness, completeness, and adherence to

engineering standards (Von Heissen et al. 2024; Timperley et al. 2025). Therefore, the

integration of explainable and trustworthy AI is essential for architectural developments

(Poulsen et al. 2025).

To address these challenges, Hovemann et al. (2025) recommend the development of

optimized prompting techniques tailored for system engineering tasks. Additionally, Bernijazov

et al. (2025) emphasize the importance of increasing the maturity of GenAI use cases step-by-

step, starting with simpler tasks and gradually extending AI's role as confidence,

trustworthiness and reliability improve. Figure 18 provides an overview of the maturity levels of

AI-based architecture development applications and assigns core capabilities to the

automation levels.

Figure 18: Vertical automation levels in AI-based architecture development applications

Level 0

Manual

Architecture Design

Level 1

AI-Architecture

Assistant

Level 2

AI-Architecture

Advisor

Level 3

AI-Architecture

Composer

Level 4

AI-Architecture

Generator

Level 5

Autonomous

Architecture Agent

Engineers

define and

maintain

architecture

manually.

AI suggests

standard

components,

interfaces &

templates.

AI proposes

variants with

(dis)advantages

based on

constraints.

No AI

involvement

AI assists

specific

subtasks

AI supports

specific

decision making

AI automates

development

subtasks

AI takes over

complete

domain tasks

AI carries out

domain

processes

autonomously

AI creates

high-level

architecture

drafts from

requirements.

AI generates

and validates

architectural

concepts for

subsystems.

AI generates

and adapts

end-to-end

architecture

models.

46 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

Industry Insights into Agentic AI in MBSE

Dr. Christoph Schulze

Manager & MBSE Expert

Accenture

In complex, multi-disciplinary engineering environments, MBSE often plays a central
role in defining product architectures, managing variability, and capturing cross-
domain relationships. However, the growing scale and heterogeneity of digital
engineering ecosystems expose a persistent limitation: insufficient integration
between MBSE tools and domain‐specific toolchains, such as requirements
management, CAD/CAE, and simulation. Without strong bidirectional links, model
updates and changes in one domain may not be reliably reflected in others, leading
to data inconsistencies and reduced confidence in cross-discipline decisions.

To address these challenges, the Accenture team has integrated an Agentic AI
system directly into the MBSE tool Catia Magic. This agentic AI approach combines AI
expertise, in-depth understanding of MBSE methods and knowledge of the underlying
engineering tools, a combination essential to meaningful context to AI-driven MBSE
solutions. By understanding not only the model structures but also their engineering
context (supplied by engineers and stored in RAGs), the AI can autonomously
retrieve, interpret and relate data.

The agentic AI assists human engineers by automating repetitive modeling tasks,
suggesting model updates, and highlighting inconsistencies, while human experts
remain central in validation and decision-making. This has proven particularly
effective in strengthening traceability across model elements and improving the
consistency and completeness of variant configurations throughout the system
lifecycle. A key insight from this initiative is that tight tool integration is essential for
the successful deployment of Agentic AI in engineering environments. The ongoing
introduction of SysML V2 will further accelerate this transformation, as its textual
syntax and standardized APIs will enable much easier and more seamless integration
of AI within MBSE ecosystems.

Martin Pauls

Systems Engineering

Manager

Accenture

47 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

Product Design

AI has emerged as a transformative force in product design, particularly in CAD (Picard et al.

2025). It leverages a variety of inputs, including product specifications, part descriptions,

sketches, and 3D CAD models, to produce optimized or entirely new designs in both two and

three dimensions. Beyond generating geometry, GenAI systems are capable of learning

structured design representations and similarity measures, enabling intelligent retrieval and

modification of existing models. The benefits of applying AI in product design are multifaceted.

According to the Accenture Research Report (2024), significant efficiency and time savings can

be achieved. Gerhard et al. (2025) further emphasize that GenAI enables a human-centric

design process by taking over repetitive tasks, thereby allowing engineers to focus on high-

level conceptual and strategic design. GenAI also enhances creativity by supporting rapid idea

generation and accelerates the evaluation of design alternatives through simulation or rule-

based assessments.

However, the application of AI is not only desirable in M-CAD or E-CAD developments.

Embedded software development in particular benefits from AI applications, as software code

follows strict syntaxes of domain-specific languages and is therefore machine-readable. To

address the complexity of modern development processes, we divide the Product Design

Subsection into three parts, reflecting the three core disciplines of mechatronic product

development. While mechanical design is carried out using M-CAD tools, the design of

electrical and electronic components is performed with E-CAD tools. The rapidly growing

importance of embedded software development, particularly in recent years, is also covered in

this chapter and executed in various CASE6 tools.

M-CAD Applications
The application of AI in mechanical product design can be broadly categorized into three major

task domains, as suggested by Heidari & Iosifidis (2024):

• Representation Learning, which enables the extraction and structuring of design

knowledge from existing models, including similarity measures and feature hierarchies

• Model Optimization, where GenAI assists in refining designs to meet specific

engineering criteria

• Model Generation, where new design concepts or geometries are synthesized based

on input constraints, specifications, or learned patterns from prior data.

Representation Learning

Representation Learning focuses on understanding and abstracting geometric and functional

features from CAD models and retrieving existing, very similar designs as soon as possible.

These learned representations serve as the foundation for a variety of downstream tasks. Jones

et al. (2023) describe how models can learn meaningful features from CAD data to support

advanced modeling and analysis. This includes classification of CAD parts based on geometric

or functional criteria, segmentation of models into semantically meaningful components to

support feature editing, and similarity analysis for retrieving comparable parts from large

databases. According to Heidari & Iosifidis (2024), AI-based similarity retrieval can significantly

support the creative process by surfacing existing designs that serve as alternatives or

inspiration. Many publications show approaches on how the similarity to existing CAD designs

6 CASE: Computer Aided Software Engineering.

48 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

can be evaluated automatically. These are based on GNNs (Quan et al. 2024), autoencoders

(Jung et al. 2024) and unsupervised learning algorithms such as graph contrastive learning (Qin

et al. 2025). Furthermore, Gao et al. (2024) present a weakly-supervised diffusion-based

approach called DiffCAD, which retrieves and aligns CAD models from single RGB images.

Representation learning and model retrieval have already been extensively researched, which

is why the approaches presented here represent only a small selection of publications. For more

in-depth review papers, please refer to Heidari & Iosifidis (2024) and Ning et al. (2025).

Model Optimization

In the domain of optimization, GenAI contributes to the refinement of design alternatives that

are optimized for specific engineering criteria such as mass, stiffness, and stress distribution,

while also incorporating manufacturing constraints. One prominent technique in this category

is Generative Topology Optimization (GTO). Shin et al. (2023) provide an overview of how DL

supports GTO using surrogate models that reduce computation time, handling high-

dimensional inputs, learning of optimal parameters, and enabling exploration of broader design

spaces. Qin et al. (2024) introduce an intelligent LLM-based system for shear wall structures

that translates natural language into executable code, integrates generation with a two-stage

optimization process, and accelerates design efficiency by up to 30 times while ensuring safety

and cost-effectiveness. Major CAD software vendors like PTC (2024), Dassault Systèmes (2024),

and Siemens (2024) have incorporated such optimization features into their platforms already,

facilitating integrated simulation and validation workflows. Optimization GenAI applications are

typically coupled with a simulation or a predictive AI model (see Surrogate Modeling use cases

in Section Simulation) to evaluate the effect of the optimized modification on the engineering

criteria (Kang 2025).

Industry Insights into Technical Drawing Assistant
The creation and validation of technical drawings and 3D models are essential for
ensuring design integrity and compliance with engineering standards. However,
inspection and review processes are often manual and time-consuming. Frequent
revisions and the need for version control further increase the effort, while a lack of
harmonization leads to inconsistencies and potential design errors. A major part of
this complexity arises from collaboration between OEMs and suppliers, where
communication, data handover, and alignment efforts are especially high.

To overcome these challenges, an automated inspection solution was developed
that integrates 2D and 3D drawing checks directly into the engineering workflow. The
system combines advanced image processing and rule-based validation techniques
to automatically identify design errors and formal inconsistencies. By embedding the
inspection process into the existing engineering environment, it enables automatic
validation and minimizes design misinterpretations in cross-company interactions.

The result is a streamlined, standardized validation process that significantly
reduces lead time and inspection effort for 3D checks. Beyond cost and time savings,
the solution enhances data consistency across projects and supports better
decision-making through automated reports and analytics. Ultimately, this approach
transforms engineering validation into a continuous, data-driven process that
ensures higher reliability and faster time to market. This leads to measurable quality
improvements and stronger collaboration efficiency across the entire supply chain.

Jann Pehle

Senior Manager

Accenture

Christian Kohlschein

Associate Director

Accenture

49 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

Model Generation

Generation involves the creation of new designs based on minimal input, such as natural

language, sketches, or point cloud data. The goal of generative models is to create 2D sketches

or 3D CAD models based on the inputs.

In 2D sketch generation, Li et al. (2025c) demonstrate how stable diffusion models can generate

car rim designs from basic prompts and subsequently transform them into 3D models. Liu et al.

(2023b) explore how tools like DALL-E can generate product sketches from text, supporting

early design ideation. Massoudi & Fuge (2025) compare the performance of a multi-agent and

two-agent system for early-stage design of a solar-powered water filtration system. Both

agentic approaches lead to valid JSON structures but only cover few requirements. In 3D model

generation, several approaches exist. Badagabettu et al. (2024) show that simple text prompts

can generate basic geometries, though increasing design complexity and sufficient quality

requirements remain challenging. Xu et al. (2024) propose a multimodal model that integrates

text, 2D images, and 3D point clouds to generate usable CAD geometries. Guan et al. (2025)

present CAD-Coder, a system that incorporates reinforcement learning rewarding geometrical

plausibility and syntactic correctness in the finetuning process. By leveraging a dataset of

110,000 triplets containing text prompts, CadQuery code (CADQuery 2024), and resulting 3D

models, CAD-Coder achieves high-fidelity parametric model generation. Zhou et al. (2025)

introduce CAD-Judge, which includes review modules to efficiently use LLMs for text-to-CAD

generation, outperforming vision-language model-based methods in both accuracy and

computational efficiency. Li et al. (2025e) develop LLM4CAD, an approach leveraging GPT-4 and

GPT-4V for zero-shot 3D CAD generation from multimodal inputs, showing strong potential but

revealing that text-only prompts often outperform multimodal ones except for complex

geometries like gears and springs. A multi-agent framework is presented by Panta et al. (2025),

who apply multi-modal LLMs to autonomously generate and iteratively refine parametric CAD

models. Their framework consists of five agents (design expert, CAD script writer, executor,

script execution reviewer, and CAD image reviewer) that work collaboratively together and

generate CAD models by iteratively creating, executing, and refining scripts based on both

textual prompts and visual feedback.

E-CAD Applications
The application of AI in electronic component design can be structured into three main E-CAD

and Electronic Design Automation (EDA) application classes, as described by Pan et al. (2025):

• RTL Design, where AI supports creating Register-Transfer Level (RTL) descriptions in

Hardware Description Language (HDL) such as Verilog or VHDL, defining dataflow,

logical operations, and the circuit’s functional behavior for synthesis.

• Logic Synthesis and Physical Design, where AI assists in transforming RTL descriptions

into gate-level representations, optimizing placement, routing, clock trees, and

power/ground networks to produce the final geometric layout.

• Analog Circuit Applications, where AI aids in selecting circuit topologies, sizing

devices, and optimizing gain, bandwidth, and noise, including precise layout design for

mixed-signal environments.

RTL Design

Ma et al. (2024a) introduce VerilogReader, a framework that integrates LLMs into the coverage

directed test generation process to understand Verilog code and generate test inputs for

uncovered lines or branches, significantly outperforming random testing for simple and

50 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

medium-level designs. Thakur et al. (2023) present AutoChip, a fully automated, feedback-

driven approach that uses LLMs to iteratively generate and refine HDL code by leveraging

feedback from Verilog compilers and simulations to identify and rectify errors. Tsai et al. (2024)

propose RTLFixer, a novel framework designed to automatically fix syntax errors in Verilog code

using LLMs, employing RAG and ReAct prompting to enable autonomous debugging with

compiler feedback and human expert guidance. Chang et al. (2023) develop ChipGPT, a four-

stage zero-code logic design framework that utilizes LLMs to automatically generate hardware

logic designs from natural language specifications, demonstrating improved programmability

and broader design optimization space. Collectively, these works demonstrate a strong trend

towards automating critical and labor-intensive stages of RTL design, from code generation and

testbench creation to error correction, by harnessing the advanced comprehension and

generative capabilities of LLMs, often through iterative processes and structured feedback

mechanisms.

Logic Synthesis and Physical Design

LLMs are increasingly being applied to enhance logic synthesis and physical design,

streamlining various complex and time-consuming EDA workflows. Wu et al. (2024a) introduce

ChatEDA, an autonomous agent designed to optimize the entire RTL to Graphic Data System

Version II (GDSII) design flow through task decomposition, script generation, and task

execution. To address challenges in EDA tool documentation Question-and-Answer, Pu et al.

(2024) propose RAG-EDA, a customized RAG framework that leverages domain-specific

techniques for better semantic understanding, reranking, and accurate answer generation.

Similarly, Liu et al. (2023a) explore domain-adapted LLMs for industrial chip design with

ChipNeMo, focusing on applications like an engineering assistant chatbot, EDA script

generation, and bug summarization as well as analysis through specialized domain adaptation

techniques. Chen et al. (2023b) present TRouter, a machine learning model-based framework

for thermal-driven Printed Circuit Board (PCB) routing, which predicts thermal distribution to

guide wire and via placement for lower-temperature designs. These studies highlight a focused

effort to embed advanced AI capabilities into the later stages of chip design and physical

implementation, with the goal of automating complex tasks, enhancing decision-making, and

minimizing manual intervention. As with mechanical design, experience and data from previous

product developments can be extremely important for such applications, as a great deal of

implicit knowledge is contained in existing electronic designs.

Analog Circuit Applications

Analog circuit applications involve designing circuits that process continuous signals, such as

amplifiers, filters, and converters. AI, particularly LLMs and GNNs, can significantly aid in

automating and optimizing their complex design processes. For example, Chang et al. (2024)

introduce LaMAGIC, a pioneering LLM-based topology generation model for automated analog

circuit design, especially for power converter applications, which can efficiently generate an

optimized circuit design from custom specifications in a single pass. Nau et al. (2025) propose

SPICEAssistant, an LLM-based agent equipped with various tools to interpret feedback from the

LTSpice circuit simulator and retrieve information from datasheets using RAG, demonstrating a

significant improvement in the ability of LLMs to understand, adapt, and dimension electronic

circuits. Plettenberg et al. (2025) present a GNN-based approach for automating the addition

of optimizing components like pull-up/pull-down resistors, Resistor-Capacitor (RC) filters, and

decoupling capacitors in PCB schematics to improve robustness and reliability by representing

schematics as bipartite graphs and predicting component positions. Said et al. (2023)

investigate the use of GNNs for circuit design completion in partially designed analog circuits,

51 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

where they identify missing components and predict their placement and connectivity within

the circuit through a link prediction problem.

CASE Applications
The application of AI in embedded software development is poised to revolutionize the field,

particularly with the advent of LLMs which demonstrate strong capabilities in understanding

and generating code. As highlighted by Petrovic et al. (2025), industries with complex products

such as the automotive industry can benefit heavily from AI adoption in the embedded software

development, since stringent standards, hundreds of thousands of requirements and the trend

toward software-defined vehicles lead to a huge amount of source code to be developed.

Automating aspects of this development can significantly reduce human intervention and

accelerate complex activities. In embedded software development, the application of AI,

specifically LLMs, can be structured into three main classes:

• Code Optimization, where AI algorithms are capable of iteratively improving code for

performance, fix bugs, and generate interpretable policies.

• Code Generation, where AI enables the automatic generation of executable code from

diverse inputs like natural language requirements, formal specifications, or

architectures, significantly boosting efficiency but demanding utmost precision and

adherence to coding standards.

• Code Analysis, where AI analyses code to ensure compliance with safety standards and

automatically creates traceability links to other development artifacts.

Code Optimization

Code optimization focuses on enhancing software quality, performance, and correctness.

Ishida et al. (2024) develop LangProp, an iterative framework that optimizes LLM-generated

code performance through data-driven feedback, particularly for autonomous driving policies.

Sevenhuijsen et al. (2025) introduce VECOGEN, which refines LLM-generated C code using

iterative formal verification feedback to ensure correctness for safety-critical systems. Kirchner

& Knoll (2025) present a framework that optimizes AI-generated C++ code for automotive safety-

critical systems via static verification and test-driven iterative refinement. These studies

commonly emphasize iterative code refinement, guided by diverse feedback loops, to achieve

high quality, correctness, and reliability, especially crucial for safety-critical applications.

Code Generation

Code generation in embedded software development harnesses LLMs to automate the creation

of executable code from diverse specifications, significantly reducing development time and

effort. Patil et al. (2024) propose the spec2code framework, which combines LLM-based code

generation with formal verification to produce functionally correct, industrial-quality C code for

critical embedded automotive software from diverse specifications, including formal ACSL. Liu

et al. (2024a) empirically demonstrate the capability of GPT-4 to generate safety-critical C code

for industrial domains, proposing a Prompt-FDC method that integrates functional, generalized

domain, and constraint requirements to achieve high quality, completeness, and compliance.

Nouri et al. (2025) developed a simulation-guided pipeline for LLM-based code generation,

enabling iterative refinement and bug fixing of Python code for safety-critical automotive

functions like Adaptive Cruise Control and Collision Avoidance by Evasive Manoeuvre based on

feedback from virtual testing. Abdalla et al. (2024) explored automating the generation of

MATLAB Simulink functions from software requirements for the automotive industry, leveraging

fine-tuned open-source LLMs to create graphical programming code and documentation.

52 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

These works collectively highlight the potential of LLMs in automating code creation,

particularly for safety-critical automotive applications, by emphasizing prompt engineering,

iterative refinement, and integration with verification or simulation tools to ensure correctness

and adherence to complex standards. Further publications extend AI's code generation

capabilities to other specialized embedded software domains, including robotic controls (Luo

et al. 2024), drones (Chen et al. 2023a), and microcontrollers (Haug et al. 2025).

Code Analysis

Code analysis focuses on understanding, verifying, and validating software code, ensuring its

quality, correctness, and adherence to standards. Alturayeif et al. (2025) provide a

comprehensive systematic literature review on machine learning approaches for automated

software traceability, which is a crucial aspect of code analysis. Their work highlights how ML,

DL, and LLMs are increasingly utilized to track and manage relationships between various

software artifacts throughout the software development lifecycle particularly for safety-critical

systems. This automated traceability, often formulated as a classification or ranking problem,

links diverse artifacts like requirements, source code, and test cases, supporting essential

processes such as change management, impact analysis, and quality assurance. The study

emphasizes the growing adoption and superior performance of LLMs in this domain, while also

addressing challenges like data scarcity and the need for standardized datasets.

Summary

Despite rapid advances, several challenges must be addressed for AI to become a robust part

of product design workflows across the presented engineering disciplines.

• Synchronization and parallel development across mechanics, E/E, and embedded

software: Modern systems engineering requires tightly coordinated development of

mechanical, electrical/electronic, and embedded software components. However,

these domains often follow different development cycles, tool chains, and maturity

levels, making it challenging to maintain consistent design baselines and ensure

traceability across disciplines (Berriche et al. 2020). AI-based design assistants must

handle asynchronous updates, conflicting requirements, and cross-domain

dependencies, while supporting continuous integration of design changes. Without

robust synchronization mechanisms, the risk of design inconsistencies, late-stage

integration issues, and costly rework remains high.

• Insufficient data availability and model robustness: The field continues to suffer from

a lack of annotated and structured datasets, which limits the effectiveness of supervised

learning approaches and necessitates reliance on unsupervised or self-supervised

techniques. This data scarcity, combined with high variability in model performance

across different design contexts, makes it difficult to ensure reproducibility and

generalization of results (Heidari & Iosifidis 2024).

• Challenges in human-AI collaboration: The integration of AI tools into collaborative

design workflows raises important questions about how designers and engineers should

interact with AI systems. As Bordas et al. (2024) highlight, deeper research is needed to

define effective roles, responsibilities, and interaction patterns between humans and AI

in the creative process, particularly when dealing with complex design requirements

and interdisciplinary teams.

• Technical limitations in generating and structuring 3D content: The automated

creation of physically plausible and functionally valid 3D CAD models remains a

significant technical hurdle. Guan et al. (2025) argue that overcoming this challenge

53 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

requires the development of unified datasets that link natural language prompts,

generative code (e.g., CadQuery), and the resulting CAD models. Furthermore, to fully

harness the capabilities of LLMs, it is necessary to make 3D data compilable in a

software-like fashion, enabling the generation of interpretable and traceable model

code that directly leads to valid 3D geometries.

Overcoming these challenges leads to higher levels of automation in the application of AI in

product design, as illustrated in Figure 19, but still requires further research efforts.

Figure 19: Vertical automation levels in AI-based product design applications

Level 0

Manual Product

Designer

Level 1

AI-Design

Assistant

Level 2

AI-Design

Supporter

Level 3

AI-Design Optimizer

Level 4

Task-Autonomous

AI-Designer

Level 5

Autonomous Design

Agent

Engineers

rely on own

expertise to

generate

product

designs.

AI suggests

standard design

elements.

AI proposes

multiple design

options listing

(dis-)advantages.

No AI

involvement

AI assists

specific

subtasks

AI supports

specific

decision making

AI automates

development

subtasks

AI takes over

complete

domain tasks

AI carries out

domain

processes

autonomously

AI creates

parametric

models and

runs

optimization

loops.

AI generates

production-

ready designs

for specific

parts.

AI manages end-

to-end design

across M-CAD,

E-CAD and

embedded SW.

54 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

Simulation

GenAI and related AI technologies are increasingly transforming simulation processes in

product development, enabling faster, more efficient, and more adaptive virtual testing. The

benefits of AI-accelerated simulation are substantial. According to the review by Herrmann &

Kollmannsberger (2024), AI can be used not only to substitute traditional simulation with

surrogate models but also to enhance simulations by replacing specific components within the

simulation chain. These improvements lead to reduced computation times and lower resource

requirements while maintaining acceptable levels of accuracy. Moreover, neural networks can

be used to construct new discretization schemes, leveraging building blocks such as automatic

differentiation, gradient-based optimization, and GPU-based parallelization. Generative

approaches further expand the scope of simulation by synthesizing entirely new simulation

scenarios or datasets based on learned patterns.

The application of GenAI in simulation can be broadly categorized into three major task

domains:

• Surrogate Modelling, which focuses on replicating simulation outputs with lower

computational effort applying AI.

• Simulation Optimization, where AI guides the tuning of design parameters within

simulation loops.

• Simulation Generation, where new simulation scenarios, models or inputs are

generated or multi-agent systems are applied to automate end-to-end simulation

processes.

Surrogate Modelling

Surrogate modelling is an emerging application area of AI in engineering simulation, where

machine learning models, particularly neural networks, are trained to approximate the

behaviour of complex physical systems with significantly lower computational cost. These

models act as stand-ins for traditional numerical simulations, enabling rapid prediction and

design iteration. A fundamental distinction in this field lies between data-driven neural networks

and physics-informed neural networks (PINNs). While data-driven models learn input-output

mappings purely from simulation or experimental data, PINNs incorporate physical laws,

typically in the form of partial differential equations, directly into the loss function by penalizing

deviations from known physical behaviour. This hybrid approach improves generalization,

particularly in data-scarce areas, and enhances the physical plausibility of predictions

(Herrmann & Kollmannsberger 2024).

Recent research has demonstrated the versatility of surrogate modeling across a range of

engineering domains. Hajisharifi et al. (2024) developed a reduced-order model that estimates

critical simulation coefficients, drastically accelerating CFD simulation runtimes while

preserving accuracy. Similarly, Jnini et al. (2025) presented a neural network-based, physics-

constrained mapping from geometric configurations to flow field variables such as velocity and

pressure, specifically applied to CFD simulations of curved backward-facing steps. Their work

highlights how surrogate models can be tailored for complex fluid flow problems with

geometrically sensitive dynamics.

In the structural mechanics domain, Sunil & Sills (2024) successfully predicted displacement

fields in 2D FEM simulations using a PINN architecture, demonstrating that incorporating

55 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

physical constraints into learning enables accurate and generalizable surrogates for stress-

strain analysis.

Simulation Optimization

Simulation optimization leverages the power of AI to automate and accelerate the tuning of

input parameters in complex engineering simulations. By integrating AI with conventional

simulation tools, this approach enables engineers to explore design spaces more efficiently,

identify performance bottlenecks, and optimize system behavior with minimal manual

intervention. A key component of simulation optimization is automated sensitivity analysis,

which assesses how changes in input parameters affect simulation outputs. Traditionally a time-

consuming task involving numerous simulation runs, this process can now be streamlined with

AI models that learn the relationships between parameters and performance metrics. These

models not only reduce computational overhead but also uncover non-obvious dependencies

and interactions between parameters, enabling more targeted optimization strategies. In

addition, parameter optimization is enhanced using generative models and intelligent search

techniques. AI systems can propose candidate parameter sets based on learned patterns from

historical simulations or desired output targets. Through iterative refinement, often guided by

reinforcement learning or Bayesian optimization, these systems converge on optimal

configurations that meet predefined objectives such as minimal energy consumption,

structural integrity, or flow efficiency. Zhang (2025h) applies deep reinforcement learning

algorithms to optimize turbulence model parameters, improving the accuracy and efficiency of

CFD simulations. Zhang et al. (2025g) demonstrate how LLMs can act as decision-makers in

parametric shape optimization for CFD simulations, efficiently guiding the search for optimal

designs and outperforming classical optimization methods in convergence speed.

Further Publications that perform optimizations based on generative algorithms are already

widespread in the literature, particularly for CFD simulations (Chen et al. 2024, Chen et al.

2025a, Pandey et al. 2025, Dong et al. 2025, Yue et al. 2025a, Yue et al. 2025b). The content of

these papers is presented in the subsection on simulation generation, as they also involve the

generation of the simulation setup.

Simulation Generation

Industry Insights into LLM-supported FEM Simulations

Mattia A. Ciampa

Product Development

Senior Manager

Accenture

In the context of product development, Digital Twin models have become essential to
meeting performance targets within realistic time and cost. However, their effective
use often depends on specialized expertise concentrated in a few experts, creating a
barrier to scaling the full potential of Virtual Product Development.

To address this, an Agentic AI approach was introduced, leveraging state-of-the-art
LLMs integrated with a commercial Finite Element solver. The agents manage pre-
and post-processing through Python APIs and coordinate High Performance
Computing resources to execute simulations more efficiently. By automating these
complex tasks, the system lowers the expertise required to interact with Digital Twin
software, allowing engineers to dedicate more effort to product value creation
instead of tool-specific activities.

The outcome was a significant improvement in efficiency, speed, and accessibility,
enabling engineers with limited simulation experience to contribute effectively. A key
insight from this initiative was the importance of coupling Agentic AI with robust
simulation infrastructures and scalable data pipelines. Only within such an
ecosystem can AI agents provide consistent, reliable, and valuable support.

56 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

Recent research demonstrates the increasing autonomy of multi-agent GenAI frameworks for

automating simulation workflows, particularly in CFD simulations. These systems translate

natural language inputs into executable simulation setups and optimize simulations

parameters, reducing the need for expert intervention.

Chen et al. (2024) and Dong et al. (2025) both present multi-agent systems capable of end-to-

end CFD simulation based solely on natural language. While Chen et al. (2024) present

MetaOpenFOAM, a system that employs a RAG approach using CFD tutorials, NL2FOAM by

Dong et al. (2025) replaces RAG with fine-tuning on 28,000+ simulation configurations,

enabling more robust domain-specific code generation without external lookups. Both

frameworks include agents for requirement interpretation, input file generation, simulation

execution, and error handling. Chen et al. (2025a) expand MetaOpenFOAM by

OptMetaOpenFOAM, which integrates automated sensitivity analysis and parameter

optimization, raising the autonomy and accessibility of simulation optimization for non-experts.

Similarly, Pandey et al. (2025) and Yue et al. (2025a) propose multi-agent frameworks that

leverage RAG databases to embed domain-specific knowledge from prior setups. These

systems refine the roles of agents to include requirement parsing, configuration generation,

and iterative correction through error analysis, demonstrating enhanced simulation validity and

modeling accuracy. In another publication, the authors automate the approach and extend,

among other things, the tool interoperability capabilities of the multi-agent system using MCP

(Yue et al. 2025b). Feng et al. (2025) introduce another multi-agent framework that transforms

natural language queries into fully automated, reproducible CFD simulations with rigorous

reliability standards, demonstrating accessibility and precision across diverse flow problems.

The framework consists of different agents, which are responsible for pre-processing, prompt

generation, simulation execution and post-processing. Due to the increasing popularity of

GenAI and agentic AI in CFD simulations, benchmark suites for evaluating the performance of

LLMs in CFD workflows have recently been published (Somasekharan et al. 2025).

Beyond CFD, Hou et al. (2025a) explore FEA simulation generation using a GNN to retrieve and

adapt similar simulation code segments, enabling LLMs to generate valid FEA input files. In the

field of multibody dynamics, Möltner et al. (2025) show the feasibility of LLM-based simulation

generation and evaluation, despite limitations in parameter interpretation.

The highly advanced applications in the field of simulations demonstrate the value that GenAI

can offer in this domain. However, several challenges still need to be addressed.

• Limited generalization: While surrogate models have demonstrated promising results,

their performance often declines when applied to unseen scenarios or highly nonlinear,

multi-physics problems. Even PINNs struggle to maintain accuracy when domain

knowledge is incomplete or difficult to encode, raising concerns about the robustness

and physical plausibility of AI-generated simulation outputs (Herrmann &

Kollmannsberger 2024; Sunil & Sills 2024).

• Insufficient data availability: Many simulation tasks, particularly outside well-

researched domains like CFD, lack large, annotated datasets required to train reliable AI

models. Although fine-tuning on task-specific configurations, as demonstrated by Dong

et al. (2025), offers a solution, the general applicability of such approaches is limited by

the cost and effort of curating domain-specific training data at scale.

• Trust and Interpretability: Despite advances in automation and multi-agent

orchestration (e.g. Chen et al. 2024; Yue et al. 2025a), GenAI frameworks for simulation

are often not seamlessly integrated into standard CAE toolchains. Furthermore, the lack

of interpretability (Herrmann & Kollmannsberger 2024), transparent error handling, and

57 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

self-validation capabilities hinders user trust, especially in safety-critical or regulatory

contexts, where engineers must retain oversight and accountability for simulation

outcomes (Möltner et al. 2025).

The maturity level of simulation applications in the literature can already be considered high

and, by overcoming the identified challenges, can potentially even be elevated according to

the automation levels shown in Figure 20.

Figure 20: Vertical automation levels in AI-based simulation applications

Level 0

Manual Simulation

Engineer

Level 1

AI-Assisted

Simulator

Level 2

AI-Simulation

Decision Support

Level 3

AI-Simulation

Optimizer

Level 4

AI-Simulation

Generator

Level 5

Autonomous

Simulation Agent

Engineers

manually set

up, run, and

interpret

simulations

AI suggests

simulation

parameters and

settings.

AI predicts

simulation

results based on

surrogate

models.

No AI

involvement

AI assists

specific

subtasks

AI supports

specific

decision making

AI automates

development

subtasks

AI takes over

complete

domain tasks

AI carries out

domain

processes

autonomously

AI automates

full simulation

pre- & post-

processing.

AI executes

full simulation

workflows for

defined

components.

AI controls the

full simulation

lifecycle incl.

design variation

and

optimization.

58 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

System Testing

System testing is a critical phase in product development, encompassing both software and

hardware verification to ensure functional correctness, reliability, and performance under real-

world conditions. In practice, this involves complex and often time-consuming tasks such as

generating test cases, executing tests across diverse configurations, analyzing large volumes

of output data, and diagnosing the root causes of observed failures.

GenAI and related AI technologies are beginning to reshape system testing by automating these

traditionally manual tasks, improving test coverage, accelerating feedback cycles, and

uncovering system-level issues earlier in the development process. For software testing, GenAI

models can interpret requirements or source code to automatically generate test cases, identify

logic flaws, and assist in debugging by tracing error propagation or suggesting fixes (Wang et

al. 2024a). In hardware-in-the-loop (HIL) or test rig environments, AI supports real-time signal

analysis, anomaly detection, and pattern recognition, reducing the engineering effort required

to interpret high-frequency, high-volume sensor data.

According to recent developments, the application of GenAI in system testing can be broadly

categorized into three major task domains:

• Test Generation, where AI algorithms generate and optimize test cases from

requirements, specifications, or source code

• Test Debugging, in which GenAI supports fault localization, failure prediction, and

code-level issue resolution

• Test Data Analysis, especially in hardware testing, where GenAI enables intelligent

processing of sensor data, identification of failure patterns, and extraction of insights

from large-scale test logs or rig outputs.

Test Generation

Test case automation plays a pivotal role in increasing the efficiency, coverage, and consistency

of system testing, particularly in complex software systems. Traditionally reliant on manually

written test cases, recent advances in GenAI have introduced new ways to automatically

generate, select, and optimize test cases based on natural language requirements, source

code, or behavioural properties. These techniques not only reduce engineering effort but also

improve test relevance, coverage and adaptivity in evolving development environments.

Recent research highlights the increasing potential of GenAI to automate and enhance test case

generation across software and cyber-physical systems. Birchler et al. (2023) propose a

machine learning-based method to selectively skip test cases unlikely to uncover faults in self-

driving vehicle software, significantly improving the cost-efficiency of large-scale test

campaigns. Etemadi et al. (2025) introduce CHECKPROP, a novel LLM-based approach for

generating property-based tests that verify system behaviour over a wide range of inputs,

supporting both design-time verification and runtime monitoring in cyber-physical

environments. A growing trend is the integration of GenAI-driven testing with broader

development workflows. Huang et al. (2023) present a multi-agent architecture where test case

generation, execution, and feedback are coupled with automated code refinement through a

programmer agent. This aligns with findings from Jin et al. (2024), who observe a shift toward

LLM-based agents that interconnect test case creation, debugging, and software improvement,

paving the way for more autonomous, adaptive testing systems. Amyan et al. (2024) present an

59 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

NLP-driven approach using BERT and Word2Vec that automatically derives and executes fault

injection test cases from functional safety requirements on HIL platforms, achieving over 91%

accuracy and significantly improving the efficiency of ISO 26262–compliant automotive safety

validation. An LLM-based method to automatically generate PLC test cases from function block

code is proposed by Koziolek et al. (2024), showing that it is fast and effective for low-to-

medium complexity programs. Wynn-Williams et al. (2025) demonstrate that LLMs can translate

informal automotive test specifications into executable test scripts with reasonable accuracy,

while emphasizing the importance of prompt design, model choice, and retrieval mechanisms

for industrial applicability. Milchevski et al. (2025) propose an AI-powered assistant that

leverages LLMs and structured intermediate representations to generate system-level test

specifications, reducing development effort by 30–40% and improving accuracy and reliability

in safety-critical domains. Ye et al. (2025) introduce UVM2, an LLM-powered verification

framework that automates UVM testbench generation and refinement, achieving up to 38×

faster setup and outperforming state-of-the-art solutions in code and function coverage for

industrial-scale hardware designs.

Test Debugging

GenAI is increasingly being applied to streamline debugging workflows by detecting software

defects, suggesting fixes, and improving the overall interaction between developers and

automated tools. These AI-assisted debugging approaches aim to reduce the time and effort

required to identify and resolve issues, while also enhancing developer trust and transparency.

Wang et al. (2025a) introduce Copilot for Testing, an integrated debugging and testing system

embedded directly within the software development environment. It continuously monitors

codebase changes to detect bugs, generate relevant test cases, and propose fix suggestions in

real time. This tight integration accelerates the feedback loop between coding and testing,

enabling faster, more iterative development cycles. Focusing on developer interaction, Kang et

al. (2025) propose an LLM-based debugging framework that not only identifies and resolves

code issues but also explains its reasoning process to developers. This added transparency

fosters greater trust in AI-driven debugging and improves user acceptance in professional

development environments. To support rigorous evaluation of such systems, Tian et al. (2024)

present a benchmarking framework for LLM-based debugging tools, offering standardized

Industry Insights into Test Case Generation

Marcus Hammes

Technical Director

Accenture

In the context of embedded software development, the need to accelerate the Test &
Validation phase has become increasingly critical. Traditionally, test automation
required frequent manual updates whenever software requirements changed, leading
to delays and inconsistencies.

To address this, an Agentic AI approach was introduced, leveraging state-of-the-art
LLMs and Retrieval-Augmented Generation. This setup enabled the automated
generation of test cases directly from evolving requirements and validation results.
Implemented via a generative AI platform with agentic workflows, the system
continuously adapts test automation scripts, ensuring alignment with the latest
development inputs. The result was a noticeable increase in efficiency and quality,
even though formal metrics were not captured.

A key insight from this initiative was the importance of integrating Agentic AI with a
robust knowledge graph or RAG system. This combination proved effective only when
deployed within a broader GenAI infrastructure, where agents and humans
collaboratively maintain and update data. This ensures the AI can deliver meaningful
and reliable automation support throughout the V-Model development cycle.

60 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

scenarios and metrics to assess the effectiveness and reliability of AI-generated fixes and

diagnostics. Yao et al. (2024) propose HDLdebugger, a RAG-based and fine-tuned LLM

framework that automates debugging of Hardware Description Language code, outperforming

13 baselines and achieving up to 81.93% pass-rate in chip design tasks.

Test Data Analysis

Compared to software testing, hardware testing for complex mechatronic systems presents

greater challenges due to its iterative nature and the layered integration of model-in-the-loop,

software-in-the-loop, and HIL simulations (Sadri-Moshkenani et al. 2022). The heterogeneity and

physical dependencies of these processes make it difficult to apply systematic AI testing

strategies. As a result, GenAI applications in this context focus primarily on analyzing sensor

signals and test data collected from physical test rigs.

Chen et al. (2025b) introduce FaultGPT, a system that leverages GenAI to generate automated

fault diagnosis reports directly from vibration signals, offering fast and interpretable feedback

in hardware testing environments. Similarly, Alsaif et al. (2024) present a multimodal LLM fine-

tuned for fault detection and diagnosis in Industry 4.0 scenarios. Their approach processes

diverse data types, such as images, audio, vibration signals, video, and text, to provide

comprehensive diagnostics and actionable guidance to test engineers. Compared to

conventional ML techniques, these multimodal models can dynamically support users

throughout the testing process. Abboush et al. (2024) propose a novel framework that uses

automated fault injection and HIL simulation to generate high-quality, representative real-time

datasets for AI–assisted validation of automotive software systems. In another publication, the

authors propose an ML-assisted failure analysis approach that employs LSTM models to

automatically detect and classify known and unknown faults for the real-time validation of

automotive software systems (Abboush et al. 2025). Additionally, Auer et al. (2025) propose

generalizable time-series models for anomaly detection and forecasting that can be applied out

of the box without fine-tuning. These models offer scalable solutions for real-time signal

analysis across different hardware setups and use cases. Presentedj developments highlight

how AI enhances data interpretation and decision-making in HIL testing by transforming

complex sensor data into valuable diagnostic insights and recommendations.

Further publications deal with LLM-assisted log parsing of diverse HiL documents. For example,

Xiao et al. (2024) propose LogBatcher, a training-free LLM-based log parser that clusters and

batches logs to reduce overhead, achieving efficient and cost-effective log parsing across

diverse datasets. Similar approaches called LogParser-LLM and LLMParser are presented by

Zhong et al. (2024) and Ma et al. (2024b), respectively. An extensive survey on the use of LLMs

for event log analysis is provided by Akhtar et al. (2025).

The highly repetitive nature of testing tasks offers significant potential for automation, although

several challenges still need to be overcome:

• Limited test diversity and low coverage: Generating diverse and comprehensive test

inputs remains a challenge for LLMs, as they often struggle to explore the full behavioral

space of the software under test. Despite strategies like mutation testing and fuzzing,

current approaches still result in low line and branch coverage, limiting the

effectiveness of automated testing (Wang et al. 2024a).

• Challenges in real-world application: Applying LLMs in industrial software testing

faces practical barriers, including concerns about data privacy, limited computational

resources, and the need for organization-specific fine-tuning. Many companies opt for

61 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

open-source models, which often underperform without high-quality, domain-specific

training data, which poses a significant hurdle for widespread adoption in production

environments (Wang et al. 2024a).

• Complexity and heterogeneity of hardware testing workflows: Hardware testing,

especially in mechatronic systems, involves layered approaches such as model-in-the-

loop, software-in-the-loop, and HIL testing (Sadri-Moshkenani et al. 2022). The diversity

of hardware setups, sensor configurations, and test environments makes it difficult to

standardize GenAI applications, limiting scalability and requiring extensive adaptation

for each use case.

Figure 21 shows the different automation levels in GenAI-based system testing applications.

Figure 21: Vertical automation levels in AI-based system testing applications

Level 0

Manual Test

Developer

Level 1

AI-Assisted Test

Writer

Level 2

AI-Supported Test

Designer

Level 3

Semi-Automated

Test Optimizer

Level 4

Task-Autonomous

Test Generator

Level 5

Autonomous

Testing Agent

Engineers

handle test

and IVV

activities fully

manual.

AI suggests

software tests

and analysis

scenarios.

AI identifies

critical test

coverage areas

for hardware and

software.

No AI

involvement

AI assists

specific

subtasks

AI supports

specific

decision making

AI automates

development

subtasks

AI takes over

complete

domain tasks

AI carries out

domain

processes

autonomously

AI generates

test cases and

defines

boundary

conditions.

AI executes,

adapts, and

evolves test

cases and

environments.

AI manages end-

to-end test case

& script

generation and

log analysis.

62 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

Release Management

As product complexity grows, particularly in regulated industries such as automotive,

aerospace, and medical technology, release management has become a critical pillar of

product development. It encompasses not only the coordination of software and hardware

release cycles but also the generation of technical documentation and the assurance of

regulatory compliance. These tasks are typically labour-intensive, repetitive, and involve

navigating large volumes of heterogeneous data across version histories, change requests, test

cases, requirements, and configurations.

AI is now being explored as transformative tool to streamline release workflows. AI algorithms

can automatically extract, summarize, and synthesize relevant information from technical

artifacts to generate documentation, traceability records and compliance reports. By

embedding domain-specific language models into development pipelines, organizations can

monitor compliance more continuously and reduce the manual overhead of maintaining up-to-

date regulatory records. AI systems can also intelligently link distributed and unstructured data

to derive insights, generate impact analyses, and trace the evolution of functionality across

releases.

AI applications in release management can be broadly categorized into three major task

domains:

• Documentation Generation, where GenAI is used to generate user manuals,

maintenance guides, or product documentation from various inputs such as source

code, change logs, and configuration files.

• Compliance Monitoring, where AI systems assist in monitoring, extracting, and

structuring compliance-related information to support audits and reduce the risk of

non-conformity.

• Release Note Creation, where GenAI generates clear and consistent release notes by

synthesizing information from change requests, commit messages, test results, and

requirements, helping to ensure traceability and improve communication across

stakeholders and product versions.

Documentation Generation

Product documentation, such as user manuals, maintenance guides, API references, and safety

instructions, is essential for ensuring usability, maintainability, and regulatory compliance.

Traditionally, documentation is created manually by technical writers or engineers, a process

that is often disconnected from fast-paced development cycles. As product complexity

increases and regulations evolve, the need for up-to-date, traceable, and standardized

documentation translated into different languages has become more pressing. AI offers a

promising solution by automatically generating technical documentation from structured and

semi-structured data sources such as requirements, source code, system configurations,

change logs, and design specifications. This not only reduces manual effort but also enables

near real-time updates to documentation as the underlying product evolves due to

continuously applying product changes.

Sovrano et al. (2025) demonstrate the use of LLMs for generating software-related technical

documentation that complies with the European AI Act. Their approach focuses on aligning AI-

generated documentation with regulatory requirements by interpreting legal constraints and

63 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

translating them into structured descriptions of system behaviour, data usage, and risk

management. This work highlights the potential of GenAI to bridge the gap between legal

compliance and technical clarity, particularly in regulated domains where documentation must

serve both engineering and auditing purposes. Tao et al. (2024) propose LLM-R, a framework

for the generation of maintenance schemes based on hierarchical agents and RAG, which is

intended to enhance the equipment operation efficiency in different industries, such as

aviation, energy and transportation. Shi et al. (2025) present a method based on KGs, RAG and

Chain-of-thought prompt engineering for the generation of accurate, structured maintenance

guidance documents. They demonstrate that they significantly improve content precision and

structural controllability compared to prompt-only approaches. Khoee et al. (2024) introduce

GoNoGo, an LLM-based multi-agent system that streamlines automotive software release

decisions by automating data analysis and supporting risk-sensitive deployment choices,

thereby reducing manual intervention and accelerating release processes.

Compliance Monitoring

Ensuring compliance with industry-specific regulations and legal frameworks is a central aspect

of product release management. Compliance tasks often involve interpreting complex legal

texts, mapping requirements to technical artifacts, and generating documentation for internal

reviews or external audits. Traditionally handled through manual processes, compliance checks

are time-consuming, prone to oversight, and difficult to scale as products and regulations

evolve.

Hassani (2024) presents an LLM-supported framework for regulatory analysis that assists

engineers and legal experts in identifying relevant legal clauses and aligning them with product

documentation. Using RAG-techniques, the system enables semi-automated compliance

reporting by highlighting potential gaps without replacing human judgement. This supports

compliance-by-design approaches while reducing manual effort in interpreting regulatory

texts. Han et al. (2025) propose a modular RAG-based system that automatically determines the

applicability of medical device standards across jurisdictions, achieving interpretable,

traceable justifications and significantly improving compliance reasoning compared to

Ronobijay Bhaumik

Practice Leader

Accenture

Ashish Wadjikar

Associate Director

Accenture

Agentic AI is redefining the landscape of technical publications by automating repetitive
authoring tasks, accelerating content delivery by up to 30%, and reducing manual effort
to achieve ~20% cost savings. Beyond efficiency, validation agents significantly improve
accuracy by ensuring compliance with regulatory standards and minimizing human
error. Multi-agent systems also enable seamless collaboration across authoring
disciplines - writing, editing, illustration, and program management - creating more
consistent and integrated outputs.

The technical foundation relies on a modular agent architecture that scales across
diverse products and geographies. Generative agents powered by LLMs handle content
drafting and refinement. Retrieval agents integrate vector databases with hybrid keyword
and semantic filters to ground content in authoritative sources. Validation agents
leverage NLP models and rule-based engines to automate compliance checks, while
personalization agents use embeddings and recommendation models to adapt
documentation to specific user contexts. These agents are orchestrated via event-driven
workflows, with APIs connecting them to product data repositories, compliance
systems, and feedback loops. A shared memory layer spanning short-term context and
long-term knowledge can ensure continuity and adaptability across the authoring
process.

As adoption matures, Agentic AI will evolve into self-optimizing systems, fostering
innovation, accountability, and higher-value technical publications.

Industry Insights into Technical Documentation

64 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

retrieval-only or rule-based approaches. Arora et al. (2024b) introduce CompliAT, a framework

that leverages LLMs to ensure terminology consistency, classify assistive technology products,

and trace specifications to regulatory requirements, thereby improving compliance,

accessibility, and safety in release management and technical documentation. Madireddy et al.

(2025) develop an LLM-driven framework that semi-automates building code compliance

checking by translating regulatory requirements into executable scripts, thereby reducing

manual effort and improving both accuracy and efficiency in regulatory verification for

construction projects.

Release Note Creation

Release notes play a critical role in communicating changes, improvements, and known issues

to stakeholders at each product version milestone. Traditionally compiled by release managers,

this task requires the aggregation of inputs from multiple sources, including test reports, issue

trackers, and version control systems, making it highly dependent on manual expertise. GenAI

presents a promising solution to streamline and automate this process. By synthesizing product

data from across the development pipeline, LLMs can generate coherent, audience-tailored

release notes that improve traceability and decision-making.

Daneshyan et al. (2025) demonstrate an LLM-based pipeline for automated release note

creation tailored to project-specific domains, significantly reducing manual workload and

ensuring consistency across versions. Similarly, Wu et al. (2024b) introduce a co-pilot system

that assists release managers not only by summarizing technical artifacts, such as test

outcomes, defect statistics, and code quality metrics, but also by answering strategic queries

like “Are we ready to release?” or “What are the open risks?”. In support of the documentation

quality, Kumar et al. (2024) propose using LLMs to evaluate the clarity and completeness of bug

reports and software artifacts, further enabling high-quality, automatically generated release

documentation.

GenAI applications in release management offer huge potential, but key challenges remain

critical:

• Fragmented and unstructured data sources: Release documentation and compliance

reports must synthesize information from diverse sources across all disciplines of the V-

model such as change logs, test reports, code repositories and requirement databases.

The lack of standardized formats and semantic consistency across these artifacts

complicates automated data extraction and summarization by GenAI systems.

• Context-aware documentation generation: Automatically generating accurate and

audience-specific release notes or compliance reports requires a deep understanding

of the domain, product context, and stakeholder needs. While AI models can generate

fluent text, maintaining factual correctness, traceability, and relevance to regulatory

standards remains a key challenge. Providing product- and company specific context to

the algorithms is a key challenge for GenAI applications in release management but can

be tackled through the application of RAG and KGs.

• Limited trust and validation mechanisms: GenAI-generated outputs, such as release

summaries or compliance insights, require validation for correctness and

completeness. However, robust quality assessment frameworks for AI-generated

documentation are still underdeveloped, posing risks to trust and adoption in high-

stakes industrial release processes, such that manual involvement is still highly required

for critical release and compliance documentations.

65 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

Figure 22 provides an overview of the automation levels in AI-based release management

applications.

Figure 22: Automation levels in GenAI-based release management applications

Level 0

Manual Technical

Writer

Level 1

AI-Documentation

Assistant

Level 2

AI-Documentation

Planner

Level 3

AI-Documentation

Generator

Level 4

Task-Autonomous

Documentation

Level 5

Autonomous

Documentation Agent

Engineers and

tech writers

manually draft

and maintain all

documentation.

AI suggests text

snippets or

formatting for

documentation.

AI recommends

documentation

structure and

additional

content.

No AI

involvement

AI assists

specific

subtasks

AI supports

specific

decision making

AI automates

development

subtasks

AI takes over

complete

domain tasks

AI carries out

domain

processes

autonomously

AI

automatically

generates

chapter

drafts.

AI takes over

specific E2E

documentation

tasks.

AI controls end-

to-end

documentation

& compliance

pipeline.

66 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

Cross-Domain Applications

While many AI applications in engineering focus on a single engineering domain and discipline,

an increasing share of publications exploit the interconnections between domains. Modern

engineering processes are inherently cross-functional, with artifacts such as requirements,

architecture models, source code, CAD design, test cases, test logs, and release

documentation continuously influencing one another. This creates opportunities for AI systems

to add value by integrating heterogeneous data sources, ensuring consistency across domains

and artifacts, and enabling knowledge transfer beyond domain and disciplinary boundaries.

Such cross-domain applications are especially powerful where engineering complexity,

regulatory pressure, and the demand for rapid product cycles converge. By bridging silos, AI

does not only enhance efficiency but also reduces errors and strengthens compliance in

scenarios where manual synchronization would be error-prone and resource-intensive.

Cross-domain applications can be categorized into

• Change & Configuration Management, where AI supports the analysis of change

requests, configuration baselines, and related artifacts across domains to ensure

consistency, assess impacts, and improve traceability throughout the product lifecycle.

• Portfolio & Variant Management, where AI enables the analysis and optimization of

complex product portfolios and variant structures by identifying redundancies,

predicting market and cost impacts of portfolio decisions, and supporting automated

variant derivation and configuration based on technical and business constraints.

• Program & Project Management, where AI assists in planning, monitoring, and

controlling engineering programs by predicting schedule deviations, cost overruns, and

resource conflicts, while also automating reporting and decision support through

intelligent analysis of project data and dependencies.

• Cross-Domain Multi-Agent Applications, where multi-agent systems carry out cross-

domain development tasks autonomously, modify artifacts, implement changes, and

automate cross-domain engineering processes.

• Cross-Domain Context Management, where AI extracts and links knowledge from

heterogeneous engineering domains and stores it in vector (RAG) or graph databases

(KG) to enable efficient retrieval and reasoning for downstream AI applications.

Configuration and Change Management

AI can significantly enhance configuration and change management processes by enabling

faster identification of dependencies, predicting potential impacts, and supporting decision-

making in complex development environments. AI-based methods have already been widely

deployed within software impact analysis (Samhan et al. 2024) and show strong potential to

support the efficient development of complex physical products as well (Burggräf et al. 2024).

This helps companies reduce risks, improve consistency, and accelerate change

implementation.

In automotive software development, El Asad et al. (2025) propose a RAG-assisted LLM concept,

that predicts impacts caused by software updates in vehicle manufacturing and enables earlier

detection of risks that might otherwise appear only at later stages. Treshcheva et al. (2025)

create traceability links between requirements and test scripts, which are essential for

performing change management activities such as impact analysis. Zhang et al. (2025e)

introduce MBSE 2.0, a next-generation systems engineering framework that integrates AI,

model governance, and cross-domain collaboration to overcome the limitations of traditional

MBSE. The authors state that AI enhances enterprise change management by moving beyond

67 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

static, manually defined traceability toward intelligent association, where technologies like KGs

and LLMs automatically infer and update relationships between requirements, architectures,

and simulations.

Portfolio & Variant Management

Managing product portfolios and variants, as well as selecting R&D projects, presents

significant complexity for companies, requiring advanced methods to ensure efficiency and

strategic alignment. AI-driven analytics can help identify market trends, optimize resource

allocation, and evaluate trade-offs between cost, risk, and innovation potential. By leveraging

predictive modeling and scenario-based simulations, organizations can make more informed,

data-driven decisions that enhance competitiveness and reduce time-to-market.

Mehlstäubl et al. (2022) address the challenge of predicting product attribute values for multi-

variant product portfolios, where companies offer an almost infinite number of product variants

and attribute values must be determined even for previously unbuilt configurations. Their

methodical approach utilizes ML to predict product attributes based on customer feature

configurations, demonstrating that ML reduces effort and provides more accurate and faster

predictions compared to traditional rule-based expert systems. Nielsen et al. (2024) focus on

the strategic selection of industrial R&D projects, a complex task influenced by innovation

unpredictability, competition, and technological changes. They propose a multi-objective

optimization program as a conceptual quantitative framework to systematically analyze R&D

projects and optimize corporate objectives by considering project values and risks in a multi-

project context. A case study in the renewable energy sector demonstrates how this framework

provides optimal trade-offs between portfolio value and risk, enhancing transparency in

decision-making.

Program & Project Management

Managing programs and projects in the R&D of complex mechatronic systems places high

demands on planning accuracy, cross-domain coordination, and risk management. AI

applications can support this process by providing predictive insights into project schedules,

resource utilization, and potential bottlenecks across mechanical, electrical/electronic, and

software development streams. Through advanced analytics and intelligent decision support

Industry Insights into Change & Config. Mgmt.

Dr. Jan-Ivo Springborn

Director Config. Mgmt.

Accenture

Managing product configurations and technical changes has become increasingly
complex. Every modification must be evaluated against a large set of
interdependent requirements, design elements, test results, and sourcing
constraints.

Traditionally, engineers spend substantial time searching across disconnected
systems and documents to trace the impact of a change, often leading to delays or
incomplete assessments. Artificial Intelligence offers a new approach by combining
Knowledge Graphs with Large Language Models (LLM). Combined, they create a
structured map of product data, linking information from heterogeneous sources
into a consistent and navigable network.

On top of this, LLMs can retrieve and interpret the relevant context, guiding
engineers quickly to the connections that matter most. This makes it possible to
understand the implications of an Engineering Change Request in minutes rather
than days, while maintaining end-to-end traceability. The benefits are more reliable
decisions, greater transparency in change processes, and improved collaboration
between disciplines throughout the product lifecycle. These concepts provide a
promising path to finally connecting information silos and realizing true end-to-end,
collaborative engineering.

Florian Böhme

Manager Config. Mgmt.

Accenture

68 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

systems, organizations can enhance transparency, mitigate risks early, and improve overall

program efficiency and delivery reliability.

Geyer et al. (2025) present an industry case study investigating the role of LLMs in evaluating

the quality of epics, which are critical artifacts for communicating software requirements in

agile software development. Their user study with product managers indicated high levels of

satisfaction, suggesting that LLM evaluations are a viable application for improving epic quality

and consistency, while also outlining challenges such as the need for flexibility and domain

knowledge. Kumar et al. (2025) introduce a "synthetic teammate" framework to strategically

integrate GenAI into product development activities, aiming to enrich and accelerate the overall

process. This approach advocates a "human-first" methodology, positioning GenAI as a

managed team member that enhances human thinking across problem and customer

identification, ideation, concept development, and commercialization, with humans retaining

ultimate control and decision-making responsibility.

Cross-Domain Multi-Agent Applications

A key enabler of cross-domain AI applications in engineering is process automation driven by

multi-agent systems. Unlike traditional automation approaches confined to single tools or

domains, multi-agent systems provide a distributed intelligence layer that can coordinate and

execute modifications across heterogeneous engineering environments. Each agent can

specialize for a specific task while collectively working toward a common engineering

objective. By communicating and negotiating with one another, these agents enable consistent

propagation of changes, ensure alignment of artifacts across domains, and reduce the manual

effort typically required to synchronize complex toolchains.

Wang et al. (2025b) present a multi-agent framework for autonomous mechatronics design

including four agents being responsible for mechanical, electronic, control and software

engineering, respectively. Validated through the development of an autonomous water-quality

monitoring vessel, their agentic framework demonstrates how cross-disciplinary agents

combined with structured human feedback can lower expertise barriers and enable scalable,

real-world engineering innovation. A similar approach is performed by Elrefaie et al. (2025), who

choose a multi-agent framework consisting of CAD, styling, simulation and meshing agent to

generate 2D automotive concepts, transform it into a 3D CAD model and run aerodynamic

simulations for generated 3D models. Orchestration between agents can accelerate the

iterative design process while satisfying industry-standard engineering constraints. Jin et al.

(2025) propose a two-stage multi-agent framework that integrates generative design agents

with a surrogate-based drag prediction agent, enabling the automated transformation of

ambiguous requirements into validated 3D automotive concepts while balancing aesthetics

and aerodynamic performance. Ocker et al. (2025) introduce a vision language model based

multi-agent architecture for CAD that mirrors industrial development teams by combining

requirements engineering, CAD code generation, and vision-based quality assurance, enabling

iterative, user-in-the-loop creation of parametric models from sketches or textual descriptions.

Ni et al. (2025b) present CADDesigner, an LLM-powered agent that generates high-quality CAD

modeling code from textual requirement descriptions and sketches using a novel context-

independent imperative paradigm, enhanced by iterative visual feedback and a knowledge

base for continuous improvement.

Recent research published in 2025 shows a clear shift toward cross-domain multi-agent

applications in engineering and design. Multi-agent systems are increasingly being used to

connect tasks such as requirements analysis, design generation, simulation, and validation

across different domains. This trend highlights a growing focus on orchestrated, collaborative

AI agents, and it is expected that the field will gain strong traction in the coming years.

69 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

Context Management

Cross-domain context management in engineering has gained increasing importance as

product development processes continue to grow in complexity. With rising system integration,

the need for centralized context management, data interconnectivity, and the systematic

identification of cause-effect relationships has become even more critical. In practice,

knowledge about impact chains and interdependencies between domains and disciplines is

scattered across distributed development teams. Consequently, alignment to the impact of

changes is often time-consuming and significantly slows down the overall product

development process.

Recently, advances in AI research have introduced methods that address these challenges (see

also Section 04 Context Management). Techniques such as RAG and KGs allow for scalable and

automatable knowledge extraction and retrieval, thus enabling cross-domain and cross-

disciplinary context management. These methods connect information and artifacts from

different domains, providing engineers with faster access to relevant insights and improving

decision-making in complex development environments. The publications discussed in the

following passage illustrate how such approaches leverage AI-driven methods to interlink

heterogeneous development artifacts, ultimately accelerating knowledge access across

domain boundaries.

Tong et al. (2024) propose a knowledge recommendation framework for PLM data based on KG

and GNN. Their approach provides PLM users with accurate, context-aware knowledge access

across product domains and product views (conceptual, design, manufacturing, purchasing,

sales, aftermarket) improving efficiency in design and data modeling. Kasper et al. (2024)

introduces a graph-based data model of the digital thread that interconnects product lifecycle

phases, data models, processes, and IT systems. The authors focus on the define, design,

produce, and operate phases, demonstrating that graph databases offer superior performance

for recursive operations on networked data compared to relational approaches, and highlight

future research needs in integrating dynamic processes such as quality and change

management. Ryś et al. (2024) propose a framework based on KGs and ontologies that captures

workflow concepts, modeling artefacts, and their interrelations, providing the foundation for

establishing traceability across artifacts as well as enabling knowledge retrieval and reuse. The

authors validate their approach using both a simple spring–mass–damper example and a real-

world engineering scenario involving a drivetrain smart sensor system, demonstrating its

applicability and benefits such as improved artifact management, reduced information retrieval

time, and enhanced cross-domain reasoning. Darm et al. (2025) propose an LLM-based

approach for the automated verification of requirement fulfillment. In their study, requirements

are represented as graph structures, and an LLM is employed to reason over these graphs. Using

two early-stage Capella SysML models of space missions with associated requirements as

examples, the model can determine whether specific requirements are satisfied by analyzing

the structural and relational information encoded in the graphs. A cognitive digital thread tool

chain to improve model versioning in MBSE is presented by Wu et al. (2025). The tool chain

supports conflict detection and resolution across diverse modelling languages and KGs

generated during versioning provide reasoning capabilities that enhance traceability and

decision support. The approach is validated using the example of a landing gear system,

demonstrating higher efficiency than conventional model versioning.

Jiang et al. (2025) present a two-stage RAG framework that integrates design principles and

sustainability strategies to provide contextually relevant, early-stage guidance for sustainable

product development, significantly improving design outcomes and supporting the transition

to a circular economy. Xiong et al. (2025) propose Domain-Rule-based RAG, a framework that

combines domain-specific KGs, rule-based reasoning, and digital twin technology to enhance

knowledge-driven aircraft design. By dynamically constructing KGs with a hybrid R2D-LLM

70 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

approach and integrating rule-based retrieval into a RAG pipeline, DR-RAG improves retrieval

accuracy, decision transparency, and design efficiency in complex engineering contexts.

Recent advances such as RAG, KGs and GraphRAG show significant potential for automating

context management and enabling the realization of the digital thread and comprehensive,

cross-domain traceability. First applications can already be found in literature, demonstrating

their value for linking artifacts and improving decision-making and accelerated knowledge

reuse in engineering. These technologies are key to connecting domains and disciplines,

addressing one of the central challenges of modern product development. We therefore expect

a strong increase in research efforts and integration within engineering tools in this field in the

coming years.

71 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

Use Case Summary

In the use case Section, we present a variety of AI use case classes mapped to the six core

disciplines of the V-model in product development. These use cases highlight the broad

applicability of GenAI and LLMs in engineering workflows and are summarized in Figure 23.

Figure 23: Overview over all use cases across the V-model's development domains

Requirement Generation

Requirement Optimization

Requirement Analysis

Requirement Engineering

Arch.

Architecture
Generation

Architecture
Optimization

Architecture
Analysis

Simulation

Surrogate
Modelling

Simulation
Optimization

Simulation
Generation

Testing

Test
Generation

Test
Debugging

Test Data
Analysis

Documentation Generation

Compliance Monitoring

Release Note Creation

Release

M-CAD

E-CAD

Emb. Software

Representation
Learning

Model
Optimization

Model Generation

Product Design

Code Analysis
Code

Optimization
Code Generation

RTL Design
Analog Circuit
Applications

Logic Synthesis &
Physical Design

Product Design

Cross-Domain AI Applications

Change &
Config. Mgmt.

Program &
Project Mgmt.

Context
Management

Portfolio &
Variant Mgmt.

Multi-Agent
Applications

72 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

Most identified applications focus on the generation and optimization of engineering artifacts,

leveraging existing development outputs to synthesize new content. These generative

approaches aim to accelerate and enhance tasks such as requirements formulation,

architectural design, product modeling, simulation, testing, and documentation. Creation of

traceability between development artifacts is another emerging area of research, though

current implementations are fragmented and typically confined to individual development

disciplines (Fuchß et al. 2025a, Hassine 2024). A holistic, cross-disciplinary traceability solution

with development artifacts from all engineering disciplines of the V-model has not yet been

realized.

Technically, the use cases rely either on RAG-based knowledge systems or, in more advanced

cases, on fine-tuned LLMs tailored to discipline-specific data. Applying LLMs in the disciplines

captured in the upper stages of the V-model, such as requirements engineering, architecture

design, testing, and release documentation, is generally more straightforward. This is because

the artifacts in these disciplines are primarily text- or code-based, making them well-suited to

the strengths of current LLM technologies. In contrast, LLM applications in the lower sections,

especially in the design and simulation of physical components (e.g., CAD, FEM, CFD), face

significantly higher complexity. These domains require the generation of high-resolution,

physically plausible 3D data, which remains a considerable challenge for current generative AI

models. However, a noteworthy trend is the movement toward the compilability of design (see

CADQuery 2024 and Guan et al. 2025) and simulation models (see Pandey et al. 2025 and Yue

et al. 2025a), aiming to make these artifacts more accessible to LLM-driven synthesis,

optimization and generation.

Figure 24: Results from the evaluation of 137 scientific AI publications in engineering with respect to their
vertical and horizontal maturity

Level 0

Level 1

Level 2

Level 3

Level 4

Level 5

Level 0 Level 1 Level 2 Level 3 Level 4 Level 5

Horizontal Integration

V
e

rt
ic

a
l

In
te

g
ra

ti
o

n

Vertical Dominance

Horizontal Dominance

73 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

In the Section Stages of AI Readiness in Engineering, we introduced the concept of vertical and

horizontal AI integration. Figure 24 shows an evaluation of all 137 publications analyzed in the

Use Case Section in terms of vertical and horizontal maturity according to the definitions

proposed in Figure 15. 129 of the 137 publications have a higher vertical than horizontal maturity

level, meaning that their focus is more on solving domain-specific problems than on creating

cross-domain links between tools and data. This is a trend we also observe in the

implementation of industrial PoCs and use cases. On the one hand, tools and data are highly

fragmented in industrial practice, on the other hand, they are typically managed by

organizational units that operate within separate areas of responsibility. This means that the AI

use case landscape is also oriented toward the fragmentation of tools and data and hierarchical

organizational structures. As a result, many AI use cases are being implemented, which

ultimately lead to incremental accelerations of domain-specific sub-processes in product

development, but do not sufficiently exploit the overarching potential for accelerating overall

product development through the implementation of horizontal AI use cases. The realization of

the target vision of a digital thread in product development has been discussed for several

decades and is considered desirable. With the advent of GenAI and Agentic AI, the incentives

for realizing the digital thread are now amplified, as massive reductions in product development

cycles are made possible by horizontal AI-fication of engineering.

It is also noteworthy that the current development of GenAI use cases remains largely intra-

disciplinary, with efforts primarily concentrated on advancements within distinct engineering

fields. Yet, as engineering processes become more connected, the potential for cross-

disciplinary use cases across mechanical, E/E and software development will grow. Promising

future applications include change and configuration management, cross-domain context

management, and integrations with supplier and customer systems (e.g. for cost estimation,

demand forecasting and supplier selection use cases), as well as downstream value chain

processes such as production planning, M-BOM generation, maintenance, and service.

A closer analysis of the summed up vertical and horizontal maturity levels shown in Figure 24

(i.e., the publications located in the upper right area of Figure 24) reveals a clear trend. The

simulation (Yue et al. 2025b, Feng et al. 2025, Chen et al. 2025a, Chen et al. 2024), design (Wu

et al. 2024a, Qin et al. 2024), and cross-domain use cases (Jin et al. 2025, Elrefaie et al. 2025)

with the highest maturity levels all represent multi-agent systems that automate complex, multi-

stage development processes through task distribution, tool interoperability, and agent-based

communication. This demonstrates that Agentic AI with its recently acquired capabilities has

the potential to significantly increase the degree of automation in development processes.

In the following section, we therefore provide an outlook on multi-agent systems, illustrating

how their introduction into engineering affects various dimensions and which measures

companies must now implement to fully and rapidly leverage these potentials.

To conclude this chapter, we provide an overview of the AI use cases developed by Accenture

and already implemented in industrial environments. Figure 25 summarizes the AI use cases

developed and implemented by Accenture in the engineering sector and maps them to the

domains of the V-model.

74 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

Figure 25: Integration of industrial AI use cases developed by Accenture into the V-model

Requirement Migration

Sanity Check for
Requirements

Requirement Engineering

Arch.

MBSE
Assistant

Modelling & Simulation

CAE Simulation
Models

FEM Assistant

Testing

Test Case & Script
Generation

AI & SW Dev. on
Testing Platforms

Material GPT

Regulation and Compliance
Mgmt. System

Release Management

M-CAD

E-CAD

Emb. Software

Product Design

Product Design

Cross-Domain AI Applications

3D Design Automation

Code Generation &
Development Support

Test Creation of Manual
Functional Tests

2D and 3D Drawing
Check Automation

CAD Search for identifying
Reusable Components

AI-based Ticket
Assignment

Ask an Engineer
AI supported

Change Mgmt.
Secure Eng. Doc.
Communication

AI Driven PLM
Platforms

Technical Compatibility
Management

Lean Eradication of Non-
Conformities

1 2 3 4 5

6

7

8

9 10

11 12

13

14 15

16

17

18

19

20

21

75 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

Outlook

76 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

Agentification of Engineering

In the previous Section, we demonstrated that numerous AI use cases are already being

employed in literature and industry, but the use case landscape remains fragmented and largely

focused on vertical AI integrations. Recent research into GenAI and Agentic AI has massively

expanded the portfolio of AI capabilities that have so far been not yet applied in current product

development processes. In this Section, we therefore show how fragmented use case

landscapes can be overcome by operationalizing these capabilities and providing engineers

with AI solutions that ensure a holistic application in the product development process.

As indicated in Figure 2, GenAI and Agentic AI bring new capabilities that are particularly

important for engineering of the future. These include

1. Planning & Reasoning: capability to answer questions that require complex, multi-step

processes with intermediate steps, enabling systematic problem-solving beyond fast,

heuristic responses (Li et al. 2025g, Sui et al. 2025)

2. Orchestration: capability to automatically coordinate multiple LLM agents and tasks

including state tracking, dependency management, independent validation, and

compensatory rollback to ensure consistent, reliable execution across distributed

workflows (Chang & Geng 2025)

3. Tool Interoperability: capability to discover multiple tools, orchestrate their use, and

reliably invoke them to enable multi-step workflows across environments (Xu et al.

2025b)

4. Multi-Agent Collaboration: capability to enable multiple LLM-based agents to

coordinate and manage joint objectives through structured collaboration channels so

that they jointly plan, exchange knowledge, and make collective decisions to achieve

shared goals (Tran et al. 2025)

5. Context Management: capability to preserve essential constraints, state history,

dependencies, and reasoning justifications so agents can reliably track, recall, and use

context across multi-step workflows, especially when failures or replanning occur

(Chang & Geng 2025)

6. Memory: capability to store, manage, and retrieve past information including

conversation history, task states, and reasoning traces so that agents and multi-agent

systems can maintain long-term context, support consistent decision-making, and

enable continual learning across interactions (Zhang et al. 2025d)

These capabilities have far-reaching implications for the engineering of the future. Table 2 lists

the capabilities and describes their implications for the engineering of the future. It shows that

multi-agent systems offer great potential for automation in product development, especially

when end-to-end understanding of product architectures, system and process modeling, and

access to metadata (stored in graph and vector databases) and engineering data (stored in

individual tools and accessible using tool interoperability capabilities) are enabled. A high-level

architecture that exploits the potential of the listed capabilities is shown in Figure 26. The

capabilities listed in Table 2 are assigned to the system elements.

77 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

Table 2: Implications of GenAI and Agentic AI capabilities on engineering

Capability Implication on engineering

Planning &

Reasoning

The development of complex mechatronic products is a highly networked
process whose complexity must be mastered through multi-stage
decomposition and interface definitions across multiple engineering
domains and levels. Leveraging planning and reasoning capabilities can
support identifying dependencies and constraints, and dynamically
generating and refining product structures, requirements, and design
alternatives across the entire lifecycle.

Orchestration

High-level engineering tasks such as implementing product changes
involve many steps that must be planned in fine detail and managed
adaptively. Breaking down an overall task into subtasks and processing
them sequentially while monitoring overall progress and possible
dependencies are essential components of engineering activities. With
orchestration capabilities, it will be possible in the future to orchestrate
complex tasks, continuously monitor their progress, and proactively draw
attention to risks.

Interoperability

Engineering toolchains from companies with complex product portfolios
often consist of several hundred or even thousands of tools, whose
interoperability is ensured by point-to-point integrations or by connection
to lifecycle systems. With interoperability capabilities and agentic
communication protocols such as MCP, data can continue to be managed
in tools and retrieved or modified from the outside. This will ensure
compatibility between multi-vendor toolchains and AI applications, while
at the same time increasing the requirements for standardized data
management.

Multi-Agent

Collaboration

As engineering tasks become more complex and orchestration efforts
increase, so does the need to deploy multiple interacting agents that work
together to achieve an overarching goal. Hierarchical agent architectures
consisting of an orchestrator with an end-to-end product view and
multiple subagents that communicate bidirectionally with the
orchestrator are ideal for this purpose. Together with planning &
reasoning, orchestration, and tool interoperability capabilities, entire
multi-agent systems for engineering can be designed that automate cross-
domain and cross-tool processes, with agents reacting adaptively to
states and unplanned events.

Context

Management

The provision of context is particularly important for complex product
developments, since domain-specific processes, data and syntax play a
crucial role. For agents to understand complex systems, architectures,
processes, dependencies, and structures, information must be provided
centrally and be reflected in graph databases, vector databases or process
and system modeling. Access to this data and gaining a higher-level
understanding of the overall system structure and processes for
developing or modifying the system determines the degree of end-to-end.

Memory

Additional context that is valuable for performing engineering tasks
comes from engineers' historical prompt histories, design rationales, and
decision logs. By leveraging the memory capabilities of LLMs and Agentic
AI, engineering teams can maintain long-term context across
development tasks and cycles, ensure consistent and traceable decision-
making, and enable continual learning from previous designs and
problem-solving episodes. This persistent, structured memory supports
complex, multi-stage product development by reducing knowledge loss,
accelerating iteration, and improving cross-domain collaboration.

78 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

Figure 26: High-level engineering AI architecture including a hierarchical multi-agent system

A user interface provided on the AI platform serves as the interface between engineers and AI

applications. This allows access to individual AI use cases as well as a hierarchically structured

multi-agent framework that can be used for complex end-to-end engineering tasks. The

hierarchical multi-agent system consists of a high-performance orchestrator with reasoning

and orchestration capabilities and further agent levels, which are responsible for domain- and

tool-specific tasks. In the context management modules, higher-level metadata is

systematically managed and made available in graph and vector databases for quick retrieval

by agents. Information about product structures, systems and process modeling from MBSE

tools is also provided to give agents an overview of the progress of the product development

process and complex relationships within the models. Each agent level is linked to a context

Interoperability

Capabilities

Context Mgmt.

Engineer

AI Platform

Tools & Data

Req. Arch. M-CAD E-CAD IDE

FEM Test Rel.CFD

User Interface

Docs Drive

Cloud Reg.

Graph
DB

System
Model

Vector
DB

1

2

3

4

5

6

Planning &
Reasoning

Orchestration

Interoperability

Multi-Agent
Collaboration

Context
Management

Memory

3

Use Cases Hierarchical Multi-Agent System

Orchestrator

ExecutorsExecutors

1 2Memory
6

4

MCP Servers

MCP Clients

Product Lifecycle Mgmt.

System Level

Super Agents Domain Level

Tool Level

5

State
Mgmt.

Prompt
History

Data Mgmt.

API CallsPrompt Templates Authorization

Human-in-Control
Checkpoint

79 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

module in which data and models are made accessible to the respective agents. The

orchestrator requires an end-to-end product view and must therefore access MBSE models and

product data that holistically describe the entire product development process. Super agents

provide an overview of domain-specific data products and are enriched with domain-specific

regulations, product structures, and data architectures. The executors are directly connected

to the tools via MCP servers and have tool-specific information in their context modules, such

as data structures, formats, and API calls, which they can use to access and modify tool data.

In the automated execution of cross-domain engineering tasks by multi-agent systems, it is

essential to introduce Human-in-Control checkpoints. These are designed to review, assess,

edit, and ultimately approve intermediate and final results produced by the multi-agent system.

It is crucial to ensure traceability, explainability, robustness, and reliability continuously

throughout the process. Thus, humans do not remain merely in the loop but in control. This

approach requires that employees are proficient in working with AI, able to interpret and

validate its results, and thus capable of monitoring compliance and technical feasibility

throughout the entire product development process.

Figure 27 shows a simplified example of how multi-agent systems could be embedded in

engineering processes in the future.

Figure 27: Exemplary and Simplified Multi-Agent Engineering Workflow consisting of a three-level
Hierarchical Multi-Agent Architecture, Context Modules, and Tool Interoperability adapted from Larichev

et al. (2025)

System ContextEngineer

Orchestrator

Arch.
Executor

Test
Executor

Release
Executor

Simulation
Executor

Req.
Executor

Design
Executor

Release Tool
Context

Test Tool ContextSim. Tool Context
Design Tool

Context
Arch. Tool

Context
Req. Tool Context

System Model

Process Model

KG & RAG database

Req. Arch. M-CAD FEM Test Rel.

Agentic
Communi-

cation
Layer

Arch. Super
Agent

Test Super
Agent

Release
Super Agent

Simulation
Super Agent

Req. Super
Agent

Design
Super Agent

Release Domain
Context

Test Domain
Context

Sim. Domain
Context

Design Domain
Context

Arch. Domain
Context

Req. Domain
Context

Human-in-
Control

Checkpoints

„Define
hierarchy &

model
organization“

„Model
relationships

between items“

„Check
compliance of

validated
design“

„Generate test
cases and

scripts and run
tests“

„Generate a
simulation

based on CAD
design“

„Create a CAD
model based on

architecture“

Human-in-
Control

Checkpoints

„Optimize req.
hierarchy &

encode
constraints…“

“Translate sys.
architecture
into detailed

arch. model…”

“Verify
compliance

against these
standards…“

„Execute test
scripts &

document log
results…“

„Generate & run
simulation with
these boundary

conditions…“

„Generate &
optimize

parametric CAD
geometry…“

MCP-based API Invocation

„Design a system
based on these unstructured

requirements: …“

80 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

The engineer sends an abstract prompt to the orchestrator for the development of a technical

system, whereupon the orchestrator uses the provided system context to break down the

abstract development task and delegate it to domain-specific sub-agents. These agents further

enrich the instructions with domain-specific context and then delegate tasks to the executor

agents. The executor agents are connected to the appropriate tools via MCP servers, are familiar

with the data structures and formats stored in the tools and can perform the development tasks

in the tools via API calls. The agents not only communicate top-down, but also inform the

corresponding higher-level agent about progress, quality, and the result of the task processing.

Bidirectional communication between the agent layers and within one agent layer (see agentic

communication layer) is necessary to delegate development tasks, but also to ensure

satisfactory task completion and bidirectional information exchange. Between each information

transfer across the agent layers, Human-in-Control checkpoints are integrated, allowing

humans to influence task execution by providing direct feedback and issuing instructions for

rework. Each agent has quality criteria that it checks after the subordinate agent has completed

its task and requests rework if necessary. This enables the orchestrator to identify conflicts

between the work results of two subordinate agents at an early stage, which in the case of

manual product development would only have been noticed in later product development

phases of verification and validation, leading to further cost-intensive iterations in the product

development process.

81 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

Industry Insights into Engineering Multi-Agent Systems

Lucas Kempe

Senior Manager

Accenture

Aleksandar Trenchev

Engineering Manager

Accenture

Contemporary engineering environments face increasing product complexity and
workforce scarcity, coupled with the demand for accelerated development cycles,
strict quality adherence, and reduced manual intervention. To meet these challenges,
multi-agent systems offer a scalable and intelligent solution in which AI agents
collaborate to automate processes, streamline workflows, and support decision-
making throughout the product lifecycle. These agents do not function as isolated
tools but interact dynamically. For instance, one agent may manage design
modifications in CAD, another may validate simulation models, and a third may
extract relevant data from documentation. Together, they establish workflows that
shorten iteration cycles and ensure compliance with engineering standards.

To demonstrate this, the Accenture team has developed a multi-agent system
capable of integrating with platforms such as Siemens Polarion, 3DS CATIA, and Altair
HyperWorks. Each integration features specialized AI capabilities for analysis, design,
and simulation. The corresponding agents that control these tools maintain tool-
specific context within RAG vector databases, enabling them to access information
on engineering task execution via API calls. This coordinated orchestration allows
agents to make autonomous decisions and transition seamlessly between tasks and
tools. The framework enhances operational efficiency, reduces complexity, and
prevents the execution of non-value-adding activities.

Our multi-agent system follows a fully software-agnostic approach, integrating
seamlessly into existing engineering toolchains. Deployment options are flexible,
offering both cloud-based and fully on-premises solutions to meet client needs. In
sectors such as aerospace and defense, on-premises implementations are essential
to comply with strict data sovereignty requirements. By automating routine tasks
across engineering domains, engineers are empowered to focus on product
evaluation and actual value creation. The multi-agent system accelerates time to
market, improves product quality, reduces effort, and can be tailored to customer-
specific data and requirements.

Till Haunschild

Associate Manager

Accenture

Jayas Jacob

Eng. Senior Analyst

Accenture

System Context
Engineer

Orchestrator

Simulation
Agent

Sim. Tool Context

Design
Agent

Design Tool
Context

Req. Agent

Req. Tool Context

Req.
(Polarion)

M-CAD
(CATIA)

FEM
(HyperWorks)

API Invocation

Vector DB (RAG)

Vipin

Neekamparambath

Eng. Senior Analyst

Accenture

82 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

The Future of Engineering

Engineering is at a turning point. AI is not only transforming individual tools or methods but also

reshaping the organizational elements that determine the success of complex product

development. We use the Accenture Butterfly Model (see Figure 28) as a template to discuss

the effects of AI on four key organizational elements:

Figure 28: The Accenture Butterfly Model as a basis for assessing the impact of AI on organizational
elements in engineering

Process

Processes are being reimagined and transformed to accelerate development cycles and

improve quality. AI will massively accelerate product development processes. While individual

engineering domains will benefit from AI-driven automation and optimization, the larger impact

will stem from horizontal AI use cases that are applied across engineering domains. The

enrichment of agentic systems with system-wide context will drive a fundamental shift from

document-centric to model-based product development (MBSE), enabling horizontal

integration across engineering disciplines. This transformation will lead to three key effects:

1. Tighter integration of domains and disciplines (mechanical, E/E, software), enabling

continuous compatibility checks and thereby the early correction of inconsistencies

(Zhang et al. 2025e).

2. Massive reduction of iteration cycle times, with a shift from the traditional V-model

towards a CI/CD-inspired approach, significantly increasing agility. Expansion of design

space exploration, as accelerated iterations allow multiple design alternatives to be

developed in parallel (Zampetti et al. 2023).

Process Data

TechnologyPeople

Increased agility and reduced
cycle times through adoption of

CI/CD

Elimination of fragmentation
through data products and

traceability

Accelerating human work through
AI with human-in-the-loop and
human-in-control approaches

Linking systems and tools with
open interfaces and

standardized communication

83 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

3. As a result, critical design decisions can be deferred to later stages with higher product

development maturity levels, fostering innovation and the exploration of previously

untapped product variants (Zhang & Zhang 2025).

Beyond engineering itself, AI will enable a higher degree of connectivity across the entire

enterprise process landscape. Feedback loops from manufacturing, supply chain, and service

can be directly incorporated into development, creating a Closed Loop Engineering (Demartini

et al. 2019) paradigm.

Data

Data becomes a strategic asset, providing the context, consistency and accessibility required

for intelligent workflows. Data is the fuel for the digitalization and AI enablement of complex

product development processes. In the future, companies will only succeed in developing

advanced mechatronic systems if they master a set of data-driven capabilities:

1. Alignment of hierarchical data architectures with the engineering toolchain, ensuring

that information flows seamlessly across tools and disciplines.

2. Reduction of the number of data formats and tools while simultaneously driving the

standardization of data and interfaces.

3. Continuous consolidation, documentation, and cataloging of consumable and

machine-readable data products, making them accessible for AI use cases (Jahnke &

Otto 2023).

4. Ensuring data compliance with regulatory requirements and defined data models, for

example, through automated policy enforcement.

5. Realization of MBSE and the connection of standardized data models with meta- and

system models (Zhang et al. 2025e).

6. Application of AI not only for horizontal and vertical use cases, but also for the

preparation, cleansing, and enrichment of datasets themselves (Singh 2023).

In this paradigm, data evolves from being a byproduct of engineering activities to a strategic

enabler of AI-driven development. Organizations that successfully industrialize their data

management practices will gain a decisive competitive advantage in the next generation of AI-

enabled product engineering.

People

People are at the center, as adaptability, talent development, and close collaboration between

humans and machines are key to success (Shao et al. 2025). AI will not replace human work in

product development but rather complement and significantly accelerate it (Brynjolfsson et al.

2025).

Historically, the evolution of product creation has been shaped by rising complexity. In the shift

from craftsmanship to mass production and later to increasingly complex mechatronic systems,

organizations attempted to master this complexity by decomposing product development into

smaller subprocesses. As a result, engineers have transformed from generalists in early

manufacturing into highly specialized experts with narrow but demanding areas of

responsibility.

AI enablement marks a turning point in this trajectory. In the future, the ability to design

products via prompt-driven development will democratize product creation. Creative tasks will

gain importance, while administrative and operational work will diminish. Faster realization of

product ideas and deeper exploration of design spaces will allow engineers to develop

unconventional product concepts to higher maturity levels and compare them with

84 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

conventional designs (Jiang et al. 2024). This will lead to increased innovation capacity and a

shift in the boundaries of what is technically feasible.

At the same time, Human-in-the-Loop and Human-in-Control will remain essential. While many

administrative and operational activities offer potential for automation, engineers must be

empowered to evaluate and approve plausibility, validity, reliability, safety, and compliance of

AI-generated content. This requires training and change management on the responsible and

reliable use of AI, ensuring explainability, and embedding human checkpoints into digitized

workflows (Lee et al. 2025). Ultimately, accountability for faulty designs cannot be delegated to

algorithms or agents, it will remain with organizations and individuals.

Technology

Technology delivers platforms, software and architectures that enable AI-driven innovation and

embed it sustainably within the organization. Over the coming years, the very platforms and

tools that underpin engineering will themselves be profoundly reshaped by AI enablement.

Through the democratization of product development, user interfaces, as illustrated in Figure

26, will be consolidated into unified platforms. Tools will increasingly be operated via prompts,

meaning that individual tools may no longer require stand-alone user interfaces but instead

provide their functionality through integrated services (Riche et al. 2025). As a result, the focus

for tool vendors will shift toward delivering open and high-performance input/output interfaces

(e.g., APIs, MCP servers) that allow access to modular and configurable data architectures.

These criteria will become decisive factors in the evaluation and selection of tools and vendors.

AI enablement will also transform data representations and storage. Automated generation of

knowledge graphs and vector databases based on development data stored within platforms

and tools will provide the contextual foundation required by agentic systems interacting

directly with these tools. At the same time, built-in data quality monitoring systems will

continuously oversee data structures, enforce policies, and ensure reliability, machine-

readability, and completeness.

Together, these developments will redefine the role of technology in engineering. The tool

landscape will evolve from a set of isolated tools into an intelligent, interconnected ecosystem

that empowers AI-driven product development.

85 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

From Vision to Execution

The previous Sections have shown which dimensions should be considered in an engineering

AI transformation and that there is currently an imbalance between vertical and horizontal AI

use cases. Based on these findings, hypotheses have been formulated as to the direction in

which elements of engineering (processes, data, people, technology) will develop. Finally, this

Subsection presents a high-level roadmap with successive steps that will transform this process

from a vision into execution. The roadmap is divided into six steps that describe the

transformation process from a fragmented tool and data landscape to an AI-native engineering

toolchain, as shown in Figure 29.

Figure 29: Proposed roadmap for achieving an AI-native engineering toolchain

1. Define the North Star & Establish Alignment: The first step is to reach a consensus on

the long-term goal of AI transformation. Stakeholders develop a shared understanding

1
2

3 4
5

6

Define the North Star &
Establish Alignment

North Star Vision: Define long-
term goal
Strategic Breakdown: Derive
milestones and quick-wins
Baseline Assessment: Analyze
current state: toolchain, data
landscape, processes,
organization
Stakeholder Alignment:
Establish shared understanding
of AI’s role
Use Case Funnel: Collect,
structure and cluster potential
AI use cases across V-Model

Implement High-Value AI
Use Cases

Data Quality Mgmt.: Introduce
quality metrics & implement
metadata management
Architecture Implementation:
Deploy architecture & build
MCP servers
Context Modules: Build context
modules (RAG & GraphRAG) for
key domains
Governance Activation: Roll
out role- and rights-based
access & continuously monitor
governance compliance

Automate, Reason &
Orchestrate

Agentic Architecture:
Transform multiple domain-
specific use cases to multi-
agent systems
AI-Assisted Decisioning:
Implement AI solutions in end-
to-end engineering processes
such as Change & Config. Mgmt.
Adaptive Workflows: Enable
self-adjusting workflows based
on historical performance data
Human-in-the-Loop: Ensure
explainability, governance
control mechanisms and define
human decision gates

Build the Foundation &
Define Architecture

Toolchain Definition:
Consolidate redundant tools &
define strategic toolchain
Data Architecture: Define data
sources, formats, flows & storage
Interoperability: Align on
standards & protocols (MCP)
Use Case Selection: Select high-
priority AI use cases (vertical &
horizontal)
Governanve & Infrastructure:
Define Gov. framework and
select AI platform

Scale, Connect &
Contextualize

Context Management: Connect
context modules and link
integrated data
System Level Interoperability:
Synchronize data and metadata
across tool and domain
boundaries
Federated Learning: Introduce
decentralized model fine-tuning
to maintain data sovereignty
AIOps environment: Integrate
automated monitoring and
feedback loops for continuous
improvement

Continuous Improvement
& North Star Realization

End-to-end Engineering
Integration: Multi-agent system
supports large parts of
engineering with defined human
decision gates
Self-Learning System: Agents
share context and lessons
learned autonomously
Interoperability: Most
engineering tools connected to
multi-agent system
Governance Automation: AI-
based monitoring of data, model
and process compliance
established

86 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

of the transformative power and role of AI and, based on this, draw up a strategic plan

with milestones and identify quick wins. The quick wins are collected, structured, and

clustered in the form of a use case funnel and include various AI use cases across the

entire product development process. At the same time, the current status of the

engineering toolchain, data landscape (data sources, data flows, data architectures,

data catalogs), processes, and organizational structure is analyzed, and weaknesses

that can be remedied with moderate effort are identified.

2. Build the Foundation & Define Architecture: In the second phase, the foundations for

an AI transformation are established. This involves assigning strategic tools to the

product development process and sorting out legacy tools that do not meet the

requirements of AI-driven engineering in terms of interoperability (APIs) and

standardization (certificates & data formats). The aim is to prepare tools, data,

processes, and people for AI-driven engineering, reduce complexity, and eliminate

redundancies. Decisions also need to be made regarding the governance framework

and the selection of the AI platform. The use case funnel defined in the first phase is

refined and the use cases to be implemented are specified. It is particularly important

to ensure that a balance is struck between vertical and horizontal AI use cases and that

the use cases can be integrated with each other in the future to enable consistency

throughout the entire product development process.

Figure 30: Strategic use case selection approach considering horizontal and vertical balance

Figure 30 shows an approach for selecting AI use cases in engineering, taking various

criteria into account. In the first step, different use cases are identified, the number of

which is then incrementally reduced until, in the end, a homogeneous network

consisting of horizontal and vertical AI use cases results. These use cases are both

technically feasible and offer a quick ROI but can also be connected to each other within

multi-agent systems.

3. Implement High-Value AI Use Cases: In the third phase, the AI use cases are

implemented and the five dimensions of the framework presented in Section Framework

for Scalable AI in Engineering are continuously monitored. With the implementation of

the use cases, data quality is improved, metrics for data quality are established and

monitored, and consistent metadata management is introduced for each use case. Tool

Step 2
Use Case &
Feasibility Analysis

Filtering criteria
• ROI, strategic relevance,

technical feasibility, tool
integration

Step 1
North Star Vision & Use Case
Brainstorming

Step 3
Strategic Embedding
& Use Case Linking

Filtering criteria
• Integration into the overall network, scalability,

multi-agent integrability, governance
compliance

87 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

interoperability is ensured through the implementation of MCP servers, and context

modules in the form of vector and graph databases are introduced for each use case as

needed. Compliance with the defined governance framework is also ensured by

introducing a rights and roles concept for the AI platform that guarantees needs-based

access to data and AI use cases.

4. Scale, Connect and Contextualize: As the implementation of AI use cases progresses,

greater emphasis is being placed on interconnection and contextualizing AI use cases.

In the fourth phase, the context modules will therefore be linked together, connections

between use case-specific graph and vector databases will be established, and the goal

of system-wide interconnection of data, processes, and tools will be pursued. System-

wide interoperability of use cases is ensured through connections to MBSE tools, while

domain-specific teams are given the opportunity to retrain the models in order to

increase the performance of the use cases. The AI platform focuses on system-wide,

automated monitoring in line with the defined governance framework and the

establishment of feedback loops for the continuous improvement of individual use

cases and their interoperability.

5. Automate, Reason & Orchestrate: In the fifth phase, the focus is on further

interconnection of the use cases by setting up the multi-agent system. The goal in this

phase is to create the higher-level agent layers from Figure 27 and to intelligently control

the domain-specific use cases at the lower level (executed by executors from Figure 27).

This enables the system-wide integration of the agentic AI capabilities from Figure 26

into the product development process and allows the introduction of cross-domain

reasoning and orchestration capabilities. Cross-domain engineering processes such as

change and configuration management can thus be supported and accelerated by AI,

with the validity of the respective results of individual agents being ensured by human

control mechanisms and decision as well as approval gates (human in control). The

implementation of higher-level agent layers significantly increases the degree of

automation in product development and enables state-dependent, adaptive workflows.

6. Continuous Improvement & North Star Realization: In the final phase, continuous

improvements are implemented in order to converge towards the defined North Star

vision. The number of connected tools is expanded, new use cases are implemented,

and further automation is pursued with regard to interoperability, governance, and self-

learning systems. Interfaces to production and feedback loops from production, use,

maintenance, and logistics are also analyzed in this phase so that engineering is

embedded in the company's entire AI ecosystem.

Comment on AI Adoption in Engineering

Kathrin Schwan

Lead AI & Data DACH

Accenture

One cornerstone of the transformation toward AI-native engineering lies in turning
today’s fragmented data and tool landscape into an integrated, interoperable digital
foundation. This transformation requires structuring engineering data for machine
readability, adopting open APIs, and applying standards such as MCP and A2A to
enable seamless cross-domain collaboration between AI agents. Unified namespaces
and common data models (e.g., ISO 10303 STEP, OPC UA, SysML v2) are critical to
ensure consistent interpretation and exchange of information across systems,
domains and disciplines.

Together with a clear governance framework and the adoption of new ways of working
within an AI operating model, this digital foundation provides the backbone for scaling
AI in engineering. It enables organizations to move beyond isolated proof-of-concepts
predominantly vertical integrated toward a scalable, domain-spanning application of
AI that drives automation, generates measurable value, and fosters innovation across
the entire engineering lifecycle.

88 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

Summary

89 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

Companies engaged in complex product development are increasingly striving to automate

their R&D processes and transform them through the integration of AI. This transformation

promises substantial acceleration of product development cycles, higher product quality,

improved compatibility between mechanical, E/E and software components, and enhanced

capabilities for design space exploration. While numerous approaches for embedding AI into

engineering already exist, most organizations have not yet established a comprehensive

management framework or achieved large-scale deployment of this technology.

This white paper introduces a framework for scalable AI applications in engineering, designed

to address the unique challenges of product development environments. Considering the

specific boundary conditions in engineering, such as fragmented tools and data landscapes,

heterogeneous data formats, stringent governance requirements, complex tool

interoperability, and high interdependencies between engineering domains along the V-model,

the framework identifies key dimensions that must be addressed to ensure scalable and

sustainable AI integration. Following terminology from Systems Engineering, the framework

distinguishes between vertical and horizontal AI use cases, depending on their level of domain

specificity and cross-domain applicability.

Based on an extensive literature review covering AI use cases across all domains of the V-model,

the paper highlights that most existing AI applications currently exhibit a high vertical maturity

but limited horizontal integration. In other words, they are typically designed around specific

tools and data sources within isolated domains, with insufficient focus on cross-domain

networking and knowledge sharing. This pattern mirrors the current state of industrial AI

adoption, which is often constrained by tool and data fragmentation as well as organizational

silos. Consequently, the paper argues that AI transformation must be driven by top

management, ensuring a balanced portfolio of vertical and horizontal use cases and promoting

integration across domains to unlock system-wide benefits.

A further key insight of the study is the emerging role of multi-agent systems in engineering,

which enable higher levels of automation and coordination between AI-driven tasks. This white

paper illustrates how such systems can be applied in future engineering environments and

analyzes their impact across four dimensions, namely processes, data, people, and technology.

Finally, a roadmap is presented that outlines the path toward scalable AI deployment in product

development.

In conclusion, the paper recommends a strategic and iterative approach to AI transformation:

selecting and developing use cases in alignment with the proposed framework, progressively

interconnecting them into multi-agent systems, and ensuring governance and scalability from

the outset. To achieve lasting success, organizations must also make deliberate choices

regarding the right tools and technologies and understand the correct sequence for generating

and structuring the required engineering artifacts. Providing contextual information across

different system levels is essential to enable consistent interpretation and automated

reasoning. Furthermore, the long-term integrability of initially developed use cases must be

safeguarded to ensure they can evolve into interconnected multi-agent ecosystems rather than

remain isolated solutions. Finally, human checkpoints embedded into agent-driven workflows

play a pivotal role in maintaining oversight, trust, and accountability, ensuring that automation

augments rather than replaces engineering expertise.

90 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

References

91 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

Abboush, M. et al. (2024). Representative real-time dataset generation based on automated

fault injection and hil simulation for ml-assisted validation of automotive software

systems. Electronics, 13(2), 437. https://doi.org/10.3390/electronics13020437

Abboush, M. et al. (2025). Advancing real-time validation of automotive software systems via

continuous integration and intelligent failure analysis. Scientific Reports, 15(1), 32936.

https://doi.org/10.1038/s41598-025-21416-5

Abdalla, A. et al. (2024). Generative artificial intelligence for model-based graphical

programming in automotive function development. Available at SSRN 5153452.

https://dx.doi.org/10.2139/ssrn.5153452

Abdel-Aty, T. A., & Negri, E. (2024). Conceptualizing the digital thread for smart

manufacturing: A systematic literature review. Journal of Intelligent Manufacturing, 35(8),

3629-3653. https://doi.org/10.1007/s10845-024-02407-1

Accenture Research Report (2021). Thread-First Thinking: Staying in front of the immense

wave of product data. https://www.accenture.com/us-en/insights/industry-x/thread-first-

thinking [Accessed: 25.10.25]

Accenture Research Report (2024). Going for growth – Navigating the great value migration

in the age of AI. https://www.accenture.com/us-en/insights/strategy/ai-enabled-growth

[Accessed: 25.10.25]

Admass, W. S. et al. (2024). Cyber security: State of the art, challenges and future directions.

Cyber Security and Applications, 2, 100031. https://doi.org/10.1016/j.csa.2023.100031

Ahmad, K. et al. (2023). Requirements engineering framework for human-centered artificial

intelligence software systems. Applied Soft Computing, 143, 110455.

https://doi.org/10.1016/j.asoc.2023.110455

AI Marketplace (2022). Are your Engineering IT Standards ready for AI? (White Paper).

https://www.prostep.org/shop/detail?ai%5Baction%5D=detail&ai%5Bcontroller%5D=Catal

og&ai%5Bd_name%5D=wp_kim_2022&ai%5Bd_pos%5D= [Accessed: 25.10.2025]

https://doi.org/10.3390/electronics13020437
https://doi.org/10.1038/s41598-025-21416-5
https://dx.doi.org/10.2139/ssrn.5153452
https://doi.org/10.1007/s10845-024-02407-1
https://www.accenture.com/us-en/insights/industry-x/thread-first-thinking
https://www.accenture.com/us-en/insights/industry-x/thread-first-thinking
https://www.accenture.com/us-en/insights/strategy/ai-enabled-growth
https://doi.org/10.1016/j.csa.2023.100031
https://doi.org/10.1016/j.asoc.2023.110455
https://www.prostep.org/shop/detail?ai%5Baction%5D=detail&ai%5Bcontroller%5D=Catalog&ai%5Bd_name%5D=wp_kim_2022&ai%5Bd_pos%5D=
https://www.prostep.org/shop/detail?ai%5Baction%5D=detail&ai%5Bcontroller%5D=Catalog&ai%5Bd_name%5D=wp_kim_2022&ai%5Bd_pos%5D=

92 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

Akhtar, S. et al. (2025). LLM-based event log analysis techniques: A survey. arXiv preprint

arXiv:2502.00677. https://doi.org/10.48550/arXiv.2502.00677

Akundi, A. et al. (2024). Text-to-Model Transformation: Natural Language-Based Model

Generation Framework. Systems 12, no. 9: 369. https://doi.org/10.3390/systems12090369

Alagarsamy, S. et al. (2024). Enhancing large language models for text-to-testcase

generation. arXiv preprint arXiv:2402.11910. https://doi.org/10.1016/j.jss.2025.112531

Alsaif, K. M. et al. (2024). Multimodal Large Language Model-Based Fault Detection and

Diagnosis in Context of Industry 4.0. Electronics, 13(24), 4912.

https://doi.org/10.3390/electronics13244912

Altendeitering, M., & Guggenberger, T. M. (2024). Data Quality Tools: Towards a Software

Reference Architecture. In HICSS (pp. 6159-6168). 10.24251/HICSS.2024.740

Altendeitering, M. et al. (2024). A design theory for data quality tools in data ecosystems:

Findings from three industry cases. Data & Knowledge Engineering, 153, 102333.

https://doi.org/10.1016/j.datak.2024.102333

Alturayeif, N. et al. (2025). Machine learning approaches for automated software traceability:

A systematic literature review. Journal of Systems and Software, 112536.

https://doi.org/10.1016/j.jss.2025.112536

Amyan, A. et al. (2024). Automating Fault Test Cases Generation and Execution for

Automotive Safety Validation via NLP and HIL Simulation. Sensors, 24(10), 3145.

https://doi.org/10.3390/s24103145

Armbrust, M. et al. (2021). Lakehouse: a new generation of open platforms that unify data

warehousing and advanced analytics. In Proceedings of CIDR (Vol. 8, p. 28).

https://www.cidrdb.org/cidr2021/papers/cidr2021_paper17.pdf [Accessed: 25.10.25]

Arora, C. et al. (2024a). Advancing requirements engineering through generative ai:

Assessing the role of llms. In Generative AI for Effective Software Development (pp. 129-148).

Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-55642-5_6

https://doi.org/10.48550/arXiv.2502.00677
https://doi.org/10.1016/j.jss.2025.112531
https://doi.org/10.3390/electronics13244912
https://scholarspace.manoa.hawaii.edu/10.24251/HICSS.2024.740
https://doi.org/10.1016/j.datak.2024.102333
https://doi.org/10.1016/j.jss.2025.112536
https://doi.org/10.3390/s24103145
https://www.cidrdb.org/cidr2021/papers/cidr2021_paper17.pdf
https://doi.org/10.1007/978-3-031-55642-5_6

93 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

Arora, C. et al. (2024b). Towards standards-compliant assistive technology product

specifications via llms. In 2024 IEEE 32nd International Requirements Engineering Conference

Workshops (REW) (pp. 385-389). IEEE. https://doi.org/10.1109/REW61692.2024.00060

Auer, A. et al. (2025). TiRex: Zero-Shot Forecasting Across Long and Short Horizons with
Enhanced In-Context Learning. arXiv preprint arXiv:2505.23719.

https://doi.org/10.48550/arXiv.2505.23719

Azzabi, S. et al. (2024). Data lakes: A survey of concepts and architectures. Computers, 13(7),

183. https://doi.org/10.3390/computers13070183

Badagabettu, A. et al. (2024). Query2cad: Generating cad models using natural language
queries. arXiv preprint arXiv:2406.00144.

https://doi.org/10.48550/arXiv.2406.00144

Bader, E. et al. (2024). Facilitating User-Centric Model-Based Systems Engineering Using

Generative AI. In MODELSWARD (pp. 371-377). https://doi.org/10.5220/0012623200003645

Bai, J. et al. (2024). A dynamic knowledge graph approach to distributed self-driving

laboratories. Nature Communications, 15(1), 462. https://doi.org/10.1038/s41467-023-

44599-9

Barnett, S. et al. (2024). Seven failure points when engineering a retrieval augmented

generation system. In Proceedings of the IEEE/ACM 3rd International Conference on AI

Engineering-Software Engineering for AI (pp. 194-199).

https://doi.org/10.1145/3644815.3644945

Bashir, S. et al. (2025). Requirements Ambiguity Detection and Explanation with LLMs: An

Industrial Study. https://www.ipr.mdu.se/pdf_publications/7221.pdf [Accessed: 25.10.25]

Berriche, A. et al. (2020). Towards model synchronization for consistency management of

mechatronic systems. Applied Sciences, 10(10), 3577. https://doi.org/10.3390/app10103577

Bernijazov, R. et al. (2025). AI-Augmented Model-Based Systems Engineering. Zeitschrift für

wirtschaftlichen Fabrikbetrieb, 120(s1), 96-100. https://doi.org/10.1515/zwf-2024-0123

https://doi.org/10.1109/REW61692.2024.00060
https://doi.org/10.48550/arXiv.2505.23719
https://doi.org/10.48550/arXiv.2505.23719
https://doi.org/10.3390/computers13070183
https://doi.org/10.48550/arXiv.2406.00144
https://doi.org/10.48550/arXiv.2406.00144
https://doi.org/10.5220/0012623200003645
https://doi.org/10.1145/3644815.3644945
https://www.ipr.mdu.se/pdf_publications/7221.pdf
https://doi.org/10.3390/app10103577
https://doi.org/10.1515/zwf-2024-0123

94 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

Bharadwaj, A. G., & Starly, B. (2022). Knowledge graph construction for product designs

from large CAD model repositories. Advanced Engineering Informatics, 53, 101680.

https://doi.org/10.1016/j.aei.2022.101680

Bianchini, D., et al. (2024). Digital thread for smart products: A survey on technologies,

challenges and opportunities in service-oriented supply chains. IEEE Access.

https://doi.org/10.1109/ACCESS.2024.3454375

Birchler, C. et al. (2023). Machine learning-based test selection for simulation-based testing

of self-driving cars software. Empirical Software Engineering, 28(3), 71.

https://doi.org/10.1007/s10664-023-10286-y

Bleisinger, O. & Eigner, M. (2025). KI-Anwendungen im Engineering: Neue Technologien,

neue Chancen?. Zeitschrift für wirtschaftlichen Fabrikbetrieb, 120(s1), 39-43.

https://doi.org/10.1515/zwf-2024-0173

Blocklove, J. et al. (2023). Chip-chat: Challenges and opportunities in conversational

hardware design. In 2023 ACM/IEEE 5th Workshop on Machine Learning for CAD (MLCAD) (pp.

1-6). IEEE. https://doi.org/10.1109/MLCAD58807.2023.10299874

Bode, J. et al. (2024). Toward avoiding the data mess: industry insights from data mesh

implementations. IEEE Access, 12, 95402-95416.

https://doi.org/10.1109/ACCESS.2024.3417291

Bone, M. et al. (2018). Toward an interoperability and integration framework to enable digital

thread. Systems, 6(4), 46. https://doi.org/10.3390/systems6040046

Bonner, M. et al. (2024). LLM‐based Approach to Automatically Establish Traceability

between Requirements and MBSE. In INCOSE International Symposium (Vol. 34, No. 1, pp.

2542-2560). https://doi.org/10.1002/iis2.13285

Bordas, A. et al. (2024). What is generative in generative artificial intelligence? A design-

based perspective. Research in Engineering Design, 35(4), 427-443.

https://doi.org/10.1007/s00163-024-00441-x

https://doi.org/10.1016/j.aei.2022.101680
https://doi.org/10.1109/ACCESS.2024.3454375
https://doi.org/10.1007/s10664-023-10286-y
https://doi.org/10.1515/zwf-2024-0173
https://doi.org/10.1109/MLCAD58807.2023.10299874
https://doi.org/10.1109/ACCESS.2024.3417291
https://doi.org/10.3390/systems6040046
https://doi.org/10.1002/iis2.13285
https://doi.org/10.1007/s00163-024-00441-x

95 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

Borovits, N. et al. (2025). On the Maturity of LLMOps Services Computing: An Industrial

Study. In International Conference on Advanced Information Systems Engineering (pp. 310-

317). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-94931-9_25

Bouamra, Y. et al. (2025). SysTemp: A Multi-Agent System for Template-Based Generation of
SysML v2. arXiv preprint arXiv:2506.21608.

https://doi.org/10.48550/arXiv.2506.21608

Bröcker, M. A. et al. (2024). Integration of large data based on HDF5 in a collaborative and

multidisciplinary design environment, Part A: Methodology and Implementation. In AIAA

SciTech 2024 Forum (p. 0482). https://doi.org/10.2514/6.2024-0482

Brynjolfsson, E. et al. (2025). Generative AI at work. The Quarterly Journal of Economics,

140(2), 889-942. https://doi.org/10.1093/qje/qjae044

Burggräf, P. et al. (2024). AI-artifacts in engineering change management–a systematic

literature review. Research in Engineering Design, 35(2), 215-237.

https://doi.org/10.1007/s00163-023-00430-6

CADQuery (2024). A python parametric cad scripting framework.

https://cadquery.readthedocs.io/en/latest/ [Accessed: 26.10.25]

Cao, Y. et al. (2023). A comprehensive survey of ai-generated content (aigc): A history of
generative ai from gan to chatgpt. arXiv preprint arXiv:2303.04226.

https://doi.org/10.48550/arXiv.2303.04226

Chandrasegaran, S. K. et al. (2013). The evolution, challenges, and future of knowledge

representation in product design systems. Computer-aided design, 45(2), 204-228.

https://doi.org/10.1016/j.cad.2012.08.006

Chang, K. et al. (2023). Chipgpt: How far are we from natural language hardware design. arXiv
preprint arXiv:2305.14019.

https://doi.org/10.48550/arXiv.2305.14019

Chang, C. C. et al. (2024). Lamagic: Language-model-based topology generation for analog
integrated circuits. arXiv preprint arXiv:2407.18269.

https://doi.org/10.48550/arXiv.2407.18269

https://doi.org/10.1007/978-3-031-94931-9_25
https://doi.org/10.48550/arXiv.2506.21608
https://doi.org/10.48550/arXiv.2506.21608
https://doi.org/10.2514/6.2024-0482
https://doi.org/10.1093/qje/qjae044
https://doi.org/10.1007/s00163-023-00430-6
https://cadquery.readthedocs.io/en/latest/
https://doi.org/10.48550/arXiv.2303.04226
https://doi.org/10.48550/arXiv.2303.04226
https://doi.org/10.1016/j.cad.2012.08.006
https://doi.org/10.48550/arXiv.2305.14019
https://doi.org/10.48550/arXiv.2305.14019
https://doi.org/10.48550/arXiv.2407.18269
https://doi.org/10.48550/arXiv.2407.18269

96 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

Chang, E. Y., & Geng, L. (2025). SagaLLM: Context Management, Validation, and Transaction
Guarantees for Multi-Agent LLM Planning. arXiv preprint arXiv:2503.11951.

https://doi.org/10.48550/arXiv.2503.11951

Chen, G. et al. (2023a). Typefly: Flying drones with large language model. arXiv preprint

arXiv:2312.14950. https://doi.org/10.48550/arXiv.2312.14950

Chen, T. et al. (2023b). TRouter: thermal-driven PCB routing via nonlocal crisscross attention

networks. IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, 42(10), 3388-3401. https://doi.org/10.1109/TCAD.2023.3243544

Chen, Y. et al. (2024). MetaOpenFOAM: an LLM-based multi-agent framework for CFD. arXiv
preprint arXiv:2407.21320.

https://doi.org/10.48550/arXiv.2407.21320

Chen, Y. et al. (2025a). OptMetaOpenFOAM: Large Language Model Driven Chain of Thought
for Sensitivity Analysis and Parameter Optimization based on CFD. arXiv preprint

arXiv:2503.01273. https://doi.org/10.48550/arXiv.2503.01273

Chen, J. et al. (2025b). FaultGPT: Industrial Fault Diagnosis Question Answering System by
Vision Language Models. arXiv preprint arXiv:2502.15481.

https://doi.org/10.48550/arXiv.2502.15481

Cheng, H. et al. (2024). Generative AI for Requirements Engineering: A Systematic Literature
Review. arXiv preprint arXiv:2409.06741.

https://doi.org/10.48550/arXiv.2409.06741

Choi, S., & Jung, Y. (2025). Knowledge Graph Construction: Extraction, Learning, and

Evaluation. Applied Sciences, 15(7), 3727. https://doi.org/10.3390/app15073727

Cibrián, E. et al. (2025). Ensuring Semantic Consistency in SysML v2 Models Through

Metamodel-Driven Validation. IEEE Access. https://doi.org/10.1109/ACCESS.2025.3587786

Cong, Y. et al. (2025). Enhancing novel product iteration: An integrated framework for

heuristic ideation via interpretable conceptual design knowledge graph. Advanced

Engineering Informatics, 65, 103131. https://doi.org/10.1016/j.aei.2025.103131

https://doi.org/10.48550/arXiv.2503.11951
https://doi.org/10.48550/arXiv.2503.11951
https://doi.org/10.48550/arXiv.2312.14950
https://doi.org/10.1109/TCAD.2023.3243544
https://doi.org/10.48550/arXiv.2407.21320
https://doi.org/10.48550/arXiv.2407.21320
https://doi.org/10.48550/arXiv.2503.01273
https://doi.org/10.48550/arXiv.2502.15481
https://doi.org/10.48550/arXiv.2502.15481
https://doi.org/10.48550/arXiv.2409.06741
https://doi.org/10.48550/arXiv.2409.06741
https://doi.org/10.3390/app15073727
https://doi.org/10.1109/ACCESS.2025.3587786
https://doi.org/10.1016/j.aei.2025.103131

97 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

Dai, F. et al. (2025). State of the Art in Parallel and Distributed Systems: Emerging Trends and

Challenges. Electronics, 14(4), 677. https://doi.org/10.3390/electronics14040677

Daneshyan, F. et al. (2025). SmartNote: An LLM-Powered, Personalised Release Note

Generator That Just Works. arXiv preprint arXiv:2505.17977. https://doi.org/10.1145/3729345

Darm, P. et al. (2025). Inference-Time Intervention in Large Language Models for Reliable
Requirement Verification. arXiv preprint arXiv:2503.14130.

https://doi.org/10.48550/arXiv.2503.14130

Dassault Systèmes (2024). AI-Driven Generative Experiences - Succeed with AI in

Knowledge-Based Engineering. https://www.3ds.com/products/catia/ai-driven-generative-

experiences [Accessed: 26.10.25]

Demartini, M., et al. (2019). Closed-loop manufacturing for aerospace industry: An integrated

PLM-MOM solution to support the wing box assembly process. In Advances in Production

Management Systems. Towards Smart Production Management Systems: IFIP WG 5.7

International Conference, APMS 2019, Austin, TX, USA, September 1–5, 2019, Proceedings,

Part II (pp. 423-430). Springer International Publishing. https://doi.org/10.1007/978-3-030-

29996-5_49

Dong, Z. et al. (2025). Fine-tuning a large language model for automating computational fluid
dynamics simulations. Theoretical and Applied Mechanics Letters, 100594.

https://doi.org/10.48550/arXiv.2504.09602

Durão, L. F. C. et al. (2024). Digital twin data architecture for product-service systems.

Procedia CIRP, 121, 79-84. https://doi.org/10.1016/j.procir.2023.09.232

Eigner, M. (2021). System Lifecycle Management: Engineering Digitalization (Engineering

4.0). Springer Nature. https://doi.org/10.1007/978-3-662-62183-7

Eken, B. et al. (2024). A multivocal review of MLOps practices, challenges and open issues.

ACM Computing Surveys. https://doi.org/10.1145/3747346

El Asad, A. et al. (2025). Advancing Automotive Production: An LLM-based Impact Analysis for

Software Updates. Procedia CIRP, 134, 127-132. https://doi.org/10.1016/j.procir.2025.02.134

https://doi.org/10.3390/electronics14040677
https://doi.org/10.1145/3729345
https://doi.org/10.48550/arXiv.2503.14130
https://doi.org/10.48550/arXiv.2503.14130
https://www.3ds.com/products/catia/ai-driven-generative-experiences
https://www.3ds.com/products/catia/ai-driven-generative-experiences
https://doi.org/10.1007/978-3-030-29996-5_49
https://doi.org/10.1007/978-3-030-29996-5_49
https://doi.org/10.48550/arXiv.2504.09602
https://doi.org/10.48550/arXiv.2504.09602
https://doi.org/10.1016/j.procir.2023.09.232
https://doi.org/10.1007/978-3-662-62183-7
https://doi.org/10.1145/3747346
https://doi.org/10.1016/j.procir.2025.02.134

98 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

El-Hajjami, A., & Salinesi, C. (2025). Synthline: A Product Line Approach for Synthetic

Requirements Engineering Data Generation Using Large Language Models. In International

Conference on Research Challenges in Information Science (pp. 208-225). Cham: Springer

Nature Switzerland. https://doi.org/10.1007/978-3-031-92474-3_13

Elrefaie, M. et al. (2025). AI Agents in Engineering Design: A Multi-Agent Framework for
Aesthetic and Aerodynamic Car Design. arXiv preprint arXiv:2503.23315.

https://doi.org/10.48550/arXiv.2503.23315

Esposito, M. et al. (2025). Generative ai for software architecture. applications, challenges,

and future directions. Journal of Systems and Software, 112607.

https://doi.org/10.1016/j.jss.2025.112607

Etemadi, K. et al. (2025). LLM-based Property-based Test Generation for Guardrailing Cyber-
Physical Systems. arXiv preprint arXiv:2505.23549.

https://doi.org/10.48550/arXiv.2505.23549

Ettinger, A. (2025). Enterprise Architecture as a Dynamic Capability for Scalable and
Sustainable Generative AI adoption: Bridging Innovation and Governance in Large
Organisations. arXiv preprint arXiv:2505.06326.

https://doi.org/10.48550/arXiv.2505.06326

Failla, L. et al. (2025). Managing lifecycle of product information with an ontology-based

knowledge framework. Journal of Industrial Information Integration, 45, 100820.

https://doi.org/10.1016/j.jii.2025.100820

Fantechi, A. et al. (2023). Inconsistency detection in natural language requirements using

chatgpt: a preliminary evaluation. In 2023 IEEE 31st International Requirements Engineering

Conference (RE) (pp. 335-340). IEEE. https://doi.org/10.1109/RE57278.2023.00045

Faubel, L., & Schmid, K. (2024). MLOps: A Multiple Case Study in Industry 4.0. In 2024 IEEE

29th International Conference on Emerging Technologies and Factory Automation (ETFA) (pp.

01-08). IEEE. https://doi.org/10.1109/ETFA61755.2024.10711136

Feng, J. et al. (2025). OpenFOAMGPT 2.0: end-to-end, trustworthy automation for
computational fluid dynamics. arXiv preprint arXiv:2504.19338.

https://doi.org/10.48550/arXiv.2504.19338

https://doi.org/10.1007/978-3-031-92474-3_13
https://doi.org/10.48550/arXiv.2503.23315
https://doi.org/10.48550/arXiv.2503.23315
https://doi.org/10.1016/j.jss.2025.112607
https://doi.org/10.48550/arXiv.2505.23549
https://doi.org/10.48550/arXiv.2505.23549
https://doi.org/10.48550/arXiv.2505.06326
https://doi.org/10.48550/arXiv.2505.06326
https://doi.org/10.1016/j.jii.2025.100820
https://doi.org/10.1109/RE57278.2023.00045
https://doi.org/10.1109/ETFA61755.2024.10711136
https://doi.org/10.48550/arXiv.2504.19338
https://doi.org/10.48550/arXiv.2504.19338

99 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

Ferrari, A., & Spoletini, P. (2025). Formal requirements engineering and large language

models: A two-way roadmap. Information and Software Technology, 181, 107697.

https://doi.org/10.1016/j.infsof.2025.107697

Ferrero, V. et al. (2022). Classifying component function in product assemblies with graph

neural networks. Journal of Mechanical Design, 144(2), 021406.

https://doi.org/10.1115/1.4052720

Feuerriegel, S. et al. (2024). Generative AI. Business & Information Systems

Engineering, 66(1), 111-126. https://doi.org/10.1007/s12599-023-00834-7

Foidl, H. et al. (2024). Data pipeline quality: Influencing factors, root causes of data-related

issues, and processing problem areas for developers. Journal of Systems and Software, 207,

111855. https://doi.org/10.1016/j.jss.2023.111855

Fragkoulis, M. et al. (2024). A survey on the evolution of stream processing systems. The

VLDB Journal, 33(2), 507-541. https://doi.org/10.1007/s00778-023-00819-8

Fuchß, D. et al. (2025a). LiSSA: Toward Generic Traceability Link Recovery through Retrieval-

Augmented Generation. In Proceedings of the IEEE/ACM 47th International Conference on

Software Engineering. ICSE (Vol. 25). https://doi.org/10.1109/ICSE55347.2025.00186

Fuchß, D. et al. (2025b). Beyond Retrieval: A Study of Using LLM Ensembles for Candidate

Filtering in Requirements Traceability. In 2025 IEEE 33rd International Requirements

Engineering Conference Workshops (RE). https://doi.org/10.1109/REW66121.2025.00006

Gao, D. et al. (2024). Diffcad: Weakly-supervised probabilistic cad model retrieval and

alignment from an rgb image. ACM Transactions on Graphics (TOG), 43(4), 1-15.

https://doi.org/10.1145/3658236

Gärtner, A. E., & Göhlich, D. (2024). Automated requirement contradiction detection through

formal logic and LLMs. Automated Software Engineering, 31(2), 49.

https://doi.org/10.1007/s10515-024-00452-x

Gerhard, D. et al. (2025). Optimierung von Entwicklungsprozessen durch KI-gestütztes

Generatives Engineering und Design: Ein methodisches Vorgehensmodell. Zeitschrift für

wirtschaftlichen Fabrikbetrieb, 120(s1), 70-75. https://doi.org/10.1515/zwf-2024-0140

https://doi.org/10.1016/j.infsof.2025.107697
https://doi.org/10.1115/1.4052720
https://doi.org/10.1007/s12599-023-00834-7
https://doi.org/10.1016/j.jss.2023.111855
https://doi.org/10.1007/s00778-023-00819-8
https://doi.org/10.1109/ICSE55347.2025.00186
https://doi.org/10.1109/REW66121.2025.00006
https://doi.org/10.1145/3658236
https://doi.org/10.1007/s10515-024-00452-x
https://doi.org/10.1515/zwf-2024-0140

100 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

Geyer, W. et al. (2025). A Case Study Investigating the Role of Generative AI in Quality
Evaluations of Epics in Agile Software Development. In Proceedings of the 4th Annual
Symposium on Human-Computer Interaction for Work (pp. 1-18).

https://doi.org/10.48550/arXiv.2505.07664

Ghosh, S. et al. (2025). Digital twin, digital thread, and digital mindset in enabling digital

transformation: A socio-technical systems perspective. Technovation, 144, 103240.

https://doi.org/10.1016/j.technovation.2025.103240

Goedegebuure, A. et al. (2024). Data mesh: a systematic gray literature review. ACM

Computing Surveys, 57(1), 1-36. https://doi.org/10.1145/3687301

Gu, Z. et al. (2024). A systematic overview of data federation systems. Semantic Web, 15(1),

107-165. https://doi.org/10.3233/SW-223201

Guan, Y. et al. (2025). CAD-Coder: Text-to-CAD Generation with Chain-of-Thought and
Geometric Reward. arXiv preprint arXiv:2505.19713.

https://doi.org/10.48550/arXiv.2505.19713

Guo, D. et al. (2024). DeepSeek-Coder: When the Large Language Model Meets Programming-
-The Rise of Code Intelligence. arXiv preprint arXiv:2401.14196.

https://doi.org/10.48550/arXiv.2401.14196

Habiba, U. E. et al. (2024). How mature is requirements engineering for AI-based systems? A

systematic mapping study on practices, challenges, and future research

directions. Requirements Engineering, 1-34. https://doi.org/10.1007/s00766-024-00432-3

Hajisharifi, A. et al. (2024). An LSTM-enhanced surrogate model to simulate the dynamics of

particle-laden fluid systems. Computers & Fluids, 280, 106361.

https://doi.org/10.1016/j.compfluid.2024.106361

Han, H. et al. (2024a). Archcode: Incorporating software requirements in code generation
with large language models. In Proceedings of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers) (pp. 13520-13552).

https://doi.org/10.48550/arXiv.2408.00994

Han, H. et al. (2024b). Retrieval-augmented generation with graphs (GraphRAG). arXiv

preprint arXiv:2501.00309. https://doi.org/10.48550/arXiv.2501.00309

https://doi.org/10.48550/arXiv.2505.07664
https://doi.org/10.48550/arXiv.2505.07664
https://doi.org/10.1016/j.technovation.2025.103240
https://doi.org/10.1145/3687301
https://doi.org/10.3233/SW-223201
https://doi.org/10.48550/arXiv.2505.19713
https://doi.org/10.48550/arXiv.2505.19713
https://doi.org/10.48550/arXiv.2401.14196
https://doi.org/10.48550/arXiv.2401.14196
https://doi.org/10.1007/s00766-024-00432-3
https://doi.org/10.1016/j.compfluid.2024.106361
https://doi.org/10.48550/arXiv.2408.00994
https://doi.org/10.48550/arXiv.2408.00994
https://doi.org/10.48550/arXiv.2501.00309

101 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

Han, Y. et al. (2025). Standard Applicability Judgment and Cross-jurisdictional Reasoning: A
RAG-based Framework for Medical Device Compliance. arXiv preprint arXiv:2506.18511.

https://doi.org/10.48550/arXiv.2506.18511

Hanke, F. et al. (2025). AI-augmented systems engineering: conceptual application of

retrieval-augmented generation for model-based systems engineering graph. Proceedings of

the Design Society, 5, 439-448. https://doi.org/10.1017/pds.2025.10058

Harby, A. A., & Zulkernine, F. (2025). Data lakehouse: a survey and experimental study.

Information Systems, 127, 102460. https://doi.org/10.1016/j.is.2024.102460

Hassani, S. (2024). Enhancing legal compliance and regulation analysis with large language

models. In 2024 IEEE 32nd International Requirements Engineering Conference (RE) (pp. 507-

511). IEEE. https://doi.org/10.1109/RE59067.2024.00065

Hassine, J. (2024). An LLM-based approach to recover traceability links between security

requirements and goal models. In Proceedings of the 28th International Conference on

Evaluation and Assessment in Software Engineering (pp. 643-651).

https://doi.org/10.1145/3661167.3661261

Haug, S. et al. (2025). Automated Code Generation and Validation for Software Components
of Microcontrollers. arXiv preprint arXiv:2502.18905.

https://doi.org/10.48550/arXiv.2502.18905

Hedberg Jr, T. D., et al. (2020). Using graphs to link data across the product lifecycle for

enabling smart manufacturing digital threads. Journal of Computing and Information Science

in Engineering, 20(1), 011011. https://doi.org/10.1115/1.4044921

Heidari, N., & Iosifidis, A. (2024). Geometric deep learning for computer-aided design: A

survey. arXiv preprint arXiv:2402.17695. https://doi.org/10.48550/arXiv.2402.17695

Hemmat, A. et al. (2025). Research directions for using LLM in software requirement

engineering: a systematic review. Frontiers in Computer Science, 7, 1519437.

https://doi.org/10.3389/fcomp.2025.1519437

https://doi.org/10.48550/arXiv.2506.18511
https://doi.org/10.48550/arXiv.2506.18511
https://doi.org/10.1017/pds.2025.10058
https://doi.org/10.1016/j.is.2024.102460
https://doi.org/10.1109/RE59067.2024.00065
https://doi.org/10.1145/3661167.3661261
https://doi.org/10.48550/arXiv.2502.18905
https://doi.org/10.48550/arXiv.2502.18905
https://doi.org/10.1115/1.4044921
https://doi.org/10.48550/arXiv.2402.17695
https://doi.org/10.3389/fcomp.2025.1519437

102 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

Herrmann, L., & Kollmannsberger, S. (2024). Deep learning in computational mechanics: a

review. Computational Mechanics, 74(2), 281-331. https://doi.org/10.1007/s00466-023-

02434-4

Hey, T. et al. (2024). Requirements classification for traceability link recovery. In 2024 IEEE

32nd International Requirements Engineering Conference (RE) (pp. 155-167). IEEE.

https://doi.org/10.1109/RE59067.2024.00024

Hey, T. et al. (2025). Requirements Traceability Link Recovery via Retrieval-Augmented

Generation. In International Working Conference on Requirements Engineering: Foundation for

Software Quality (pp. 381-397). Cham: Springer Nature Switzerland.

https://doi.org/10.1007/978-3-031-88531-0_27

Hoang, D. et al. (2025). Knowledge Graph Fusion with Large Language Models for Accurate,
Explainable Manufacturing Process Planning. arXiv preprint arXiv:2506.13026.

https://doi.org/10.48550/arXiv.2506.13026

Holterman, E. et al. (2024). Roadmap to Strengthen the US Manufacturing Supply Chain via

Digital Thread Technology. https://www.nist.gov/publications/roadmap-strengthen-us-

manufacturing-supply-chain-digital-thread-technology [Accessed: 26.10.25]

Hooshmand, Y. et al. (2022). From a monolithic PLM landscape to a federated domain and

data mesh. Proceedings of the Design Society, 2, 713-722.

https://doi.org/10.1017/pds.2022.73

Hou, S. et al. (2025a). AutoFEA: Enhancing AI Copilot by Integrating Finite Element Analysis

Using Large Language Models with Graph Neural Networks. In Proceedings of the AAAI

Conference on Artificial Intelligence (Vol. 39, No. 22, pp. 24078-24085).

https://doi.org/10.1609/aaai.v39i22.34582

Hou, X. et al. (2025b). Model context protocol (mcp): Landscape, security threats, and future
research directions. arXiv preprint arXiv:2503.23278.

https://doi.org/10.48550/arXiv.2503.23278

Hovemann, A. et al. (2025). Prompt Engineering im Systems Engineering: Potenziale und

Grenzen moderner großer Sprachmodelle im V-Modell. Zeitschrift für wirtschaftlichen

Fabrikbetrieb, 120(s1), 101-106. https://doi.org/10.1515/zwf-2024-0139

https://doi.org/10.1109/RE59067.2024.00024
https://doi.org/10.1007/978-3-031-88531-0_27
https://doi.org/10.48550/arXiv.2506.13026
https://doi.org/10.48550/arXiv.2506.13026
https://www.nist.gov/publications/roadmap-strengthen-us-manufacturing-supply-chain-digital-thread-technology
https://www.nist.gov/publications/roadmap-strengthen-us-manufacturing-supply-chain-digital-thread-technology
https://doi.org/10.1017/pds.2022.73
https://doi.org/10.1609/aaai.v39i22.34582
https://doi.org/10.48550/arXiv.2503.23278
https://doi.org/10.48550/arXiv.2503.23278
https://doi.org/10.1515/zwf-2024-0139

103 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

Huang, D. et al. (2023). Agentcoder: Multi-agent-based code generation with iterative testing
and optimisation. arXiv preprint arXiv:2312.13010.

https://doi.org/10.48550/arXiv.2312.13010

Hur, A. et al. (2021). A survey on state-of-the-art techniques for knowledge graphs

construction and challenges ahead. In 2021 IEEE Fourth International Conference on Artificial

Intelligence and Knowledge Engineering (AIKE) (pp. 99-103). IEEE.

https://doi.org/10.1109/AIKE52691.2021.00021

Hurni, T. et al. (2021). Complementor dedication in platform ecosystems: rule adequacy and

the moderating role of flexible and benevolent practices. European Journal of Information

Systems, 30(3), 237-260. https://doi.org/10.1080/0960085X.2020.1779621

Ibrahim, N. et al. (2024). A survey on augmenting knowledge graphs (KGs) with large

language models (LLMs): models, evaluation metrics, benchmarks, and challenges. Discover

Artificial Intelligence, 4(1), 76. https://doi.org/10.1007/s44163-024-00175-8

Ishida, S. et al. (2024). Langprop: A code optimization framework using large language
models applied to driving. arXiv preprint arXiv:2401.10314.

https://doi.org/10.48550/arXiv.2401.10314

Ismail, F. N. et al. (2025). Big Data Architecture for Large Organizations. arXiv preprint

arXiv:2505.04717. https://doi.org/10.48550/arXiv.2505.04717

Jahnke, N., & Otto, B. (2023). Data catalogs in the enterprise: applications and integration.

Datenbank-Spektrum, 23(2), 89-96. https://doi.org/10.1007/s13222-023-00445-2

Jamieson, L. et al. (2024). A review of deep learning methods for digitisation of complex

documents and engineering diagrams. Artificial Intelligence Review, 57(6), 136.

https://doi.org/10.1007/s10462-024-10779-2

Jarrahi, M. H. et al. (2023). The principles of data-centric AI. Communications of the ACM,

66(8), 84-92. https://doi.org/10.1145/3571724

Jiang, T. et al. (2024). Human-AI interaction research agenda: A user-centered perspective.

Data and Information Management, 8(4), 100078. https://doi.org/10.1016/j.dim.2024.100078

https://doi.org/10.48550/arXiv.2312.13010
https://doi.org/10.48550/arXiv.2312.13010
https://doi.org/10.1109/AIKE52691.2021.00021
https://doi.org/10.1080/0960085X.2020.1779621
https://doi.org/10.1007/s44163-024-00175-8
https://doi.org/10.48550/arXiv.2401.10314
https://doi.org/10.48550/arXiv.2401.10314
https://doi.org/10.48550/arXiv.2505.04717
https://doi.org/10.1145/3571724
https://doi.org/10.1016/j.dim.2024.100078

104 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

Jiang, P. et al. (2025). A two-stage retrieval-augmented generation framework for producing

sustainable product design guidelines. Sustainable Futures, 10, 101094.

https://doi.org/10.1016/j.sftr.2025.101094

Jin, H. et al. (2024). From llms to llm-based agents for software engineering: A survey of
current, challenges and future. arXiv preprint arXiv:2408.02479.

https://doi.org/10.48550/arXiv.2408.02479

Jin, X. et al. (2025). A Closed-Loop Multi-Agent Framework for Aerodynamics-Aware
Automotive Styling Design. arXiv preprint arXiv:2508.03370.

https://doi.org/10.48550/arXiv.2508.03370

Jnini, A. et al. (2025). Physics-constrained deeponet for surrogate cfd models: a curved
backward-facing step case. arXiv preprint arXiv:2503.11196.

https://doi.org/10.48550/arXiv.2503.11196

Johns, B. et al. (2024). AI Systems Modeling Enhancer (AI‐SME): Initial Investigations into a

ChatGPT‐enabled MBSE Modeling Assistant. In INCOSE International Symposium (Vol. 34,

No. 1, pp. 1149-1168). https://doi.org/10.1002/iis2.13201

Jones, B. T. et al. (2023). Self-supervised representation learning for cad. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 21327-21336).

https://doi.org/10.1109/CVPR52729.2023.02043

Jung, M. et al. (2024). ContrastCAD: Contrastive Learning-Based Representation Learning for

Computer-Aided Design Models. IEEE Access, 12, 84830-84842.

https://doi.org/10.1109/ACCESS.2024.3415816

Kang, N. (2025). Generative AI-driven design optimization: eight key application scenarios.

JMST Advances, 1-7. https://doi.org/10.1007/s42791-025-00097-1

Kang, S. et al. (2025). Explainable automated debugging via large language model-driven

scientific debugging. Empirical Software Engineering, 30(2), 1-28.

https://doi.org/10.1007/s10664-024-10594-x

Karagoz, E. et al. (2024). Identification of Missing Knowledge in MBSE System Models Using

Graph‐Based Machine Learning. Systems Engineering, e70013.

https://doi.org/10.1002/sys.70013

https://doi.org/10.1016/j.sftr.2025.101094
https://doi.org/10.48550/arXiv.2408.02479
https://doi.org/10.48550/arXiv.2408.02479
https://doi.org/10.48550/arXiv.2508.03370
https://doi.org/10.48550/arXiv.2508.03370
https://doi.org/10.48550/arXiv.2503.11196
https://doi.org/10.48550/arXiv.2503.11196
https://doi.org/10.1002/iis2.13201
https://doi.org/10.1109/CVPR52729.2023.02043
https://doi.org/10.1109/ACCESS.2024.3415816
https://doi.org/10.1007/s42791-025-00097-1
https://doi.org/10.1002/sys.70013

105 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

Kasper, N. et al. (2024). The digital thread for system lifecycle management with a native

graph database in a polyglot architecture. Proceedings of the Design Society, 4, 2079-2088.

https://doi.org/10.1017/pds.2024.210

Khan, M. T. H., & Rezwana, S. (2021). A review of CAD to CAE integration with a hierarchical

data format (HDF)-based solution. Journal of King Saud University-Engineering Sciences,

33(4), 248-258. https://doi.org/10.1016/j.jksues.2020.04.009

Khoee, A. G. et al. (2024). GoNoGo: An Efficient LLM-based Multi-Agent System for

Streamlining Automotive Software Release Decision-Making. In IFIP International Conference

on Testing Software and Systems (pp. 30-45). Cham: Springer Nature Switzerland.

https://doi.org/10.1007/978-3-031-80889-0_3

Kirchner, S., & Knoll, A. C. (2025). Generating Automotive Code: Large Language Models for
Software Development and Verification in Safety-Critical Systems. arXiv preprint

arXiv:2506.04038. https://doi.org/10.48550/arXiv.2506.04038

Kolt, N. (2025). Governing AI agents. arXiv preprint arXiv:2501.07913.

https://doi.org/10.48550/arXiv.2501.07913

Kommineni, V. K. et al. (2024). From human experts to machines: An LLM supported
approach to ontology and knowledge graph construction. arXiv preprint arXiv:2403.08345.

https://doi.org/10.48550/arXiv.2403.08345

Koziolek, H. et al. (2024). Automated control logic test case generation using large language

models. In 2024 IEEE 29th International Conference on Emerging Technologies and Factory

Automation (ETFA) (pp. 1-8). IEEE. https://doi.org/10.1109/ETFA61755.2024.10711016

Kreuzberger, D. et al. (2023). Machine learning operations (MLOps): Overview, definition, and

architecture. IEEE access, 11, 31866-31879. https://doi.org/10.1109/ACCESS.2023.3262138

Kumar, A. et al. (2024). LLMs as Evaluators: A Novel Approach to Evaluate Bug Report
Summarization. arXiv preprint arXiv:2409.00630.

https://doi.org/10.48550/arXiv.2409.00630

Kumar, M. et al. (2025). Your synthetic teammate: Enriching new product development with

generative AI. Business Horizons. https://doi.org/10.1016/j.bushor.2025.02.008

https://doi.org/10.1017/pds.2024.210
https://doi.org/10.1016/j.jksues.2020.04.009
https://doi.org/10.48550/arXiv.2506.04038
https://doi.org/10.48550/arXiv.2501.07913
https://doi.org/10.48550/arXiv.2501.07913
https://doi.org/10.48550/arXiv.2403.08345
https://doi.org/10.48550/arXiv.2403.08345
https://doi.org/10.1109/ETFA61755.2024.10711016
https://doi.org/10.1109/ACCESS.2023.3262138
https://doi.org/10.48550/arXiv.2409.00630
https://doi.org/10.48550/arXiv.2409.00630
https://doi.org/10.1016/j.bushor.2025.02.008

106 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

Kunc, O., & Bröcker, M. A. (2024). Integration of large data based on HDF5 in a collaborative

and multidisciplinary design environment, Part B: Application to Structural Mechanics of Gas

Turbine Engines. In AIAA Scitech 2024 Forum (p. 0383). https://doi.org/10.2514/6.2024-

0383

Kwon, S. et al. (2020). Enriching standards-based digital thread by fusing as-designed and as-

inspected data using knowledge graphs. Advanced Engineering Informatics, 46, 101102.

https://doi.org/10.1016/j.aei.2020.101102

Lameh, J. et al. (2025). Automating Feature Modeling in Product Line Engineering for Systems

Engineering: The Application of Natural Language Processing. In 2nd Workshop on Model-

based System Engineering and Artificial Intelligence (pp. 450-457). SCITEPRESS-Science and

Technology Publications. https://doi.org/10.5220/0013442900003896

Larichev, V. et al. (2025). Generative AI and Agentic Architecture in Engineering and

Manufacturing: Potentials and Practice of Scalable AI Solutions. Zeitschrift für wirtschaftlichen

Fabrikbetrieb, 120(s1), 17-24. https://doi.org/10.1515/zwf-2024-0166

Lebioda, K. et al. (2025). Are requirements really all you need? A case study of LLM-driven
configuration code generation for automotive simulations. arXiv preprint arXiv:2505.13263.

https://doi.org/10.48550/arXiv.2505.13263

LeCun, Y. et al. (2015). Deep learning. nature, 521(7553), 436-444.

https://doi.org/10.1038/nature14539

Lee, J., & Su, H. (2023). A unified industrial large knowledge model framework in industry 4.0

and smart manufacturing. arXiv preprint arXiv:2312.14428.

https://doi.org/10.48550/arXiv.2312.14428

Lee, J. et al. (2025). Engineering Artificial Intelligence: Framework, Challenges, and Future
Direction. arXiv preprint arXiv:2504.02269.

https://doi.org/10.48550/arXiv.2504.02269

Li, J. et al. (2025a). Cad-llama: Leveraging large language models for computer-aided design
parametric 3d model generation. In Proceedings of the Computer Vision and Pattern
Recognition Conference (pp. 18563-18573).

https://doi.org/10.48550/arXiv.2505.04481

https://doi.org/10.2514/6.2024-0383
https://doi.org/10.2514/6.2024-0383
https://doi.org/10.1016/j.aei.2020.101102
https://doi.org/10.5220/0013442900003896
https://doi.org/10.1515/zwf-2024-0166
https://doi.org/10.48550/arXiv.2505.13263
https://doi.org/10.48550/arXiv.2505.13263
https://doi.org/10.1038/nature14539
https://doi.org/10.48550/arXiv.2312.14428
https://doi.org/10.48550/arXiv.2504.02269
https://doi.org/10.48550/arXiv.2504.02269
https://doi.org/10.48550/arXiv.2505.04481
https://doi.org/10.48550/arXiv.2505.04481

107 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

Li, S. et al. (2025b). Enhancing Retrieval-Augmented Generation: A Study of Best Practices.
arXiv preprint arXiv:2501.07391.

https://doi.org/10.48550/arXiv.2501.07391

Li, K. Y. et al. (2025c). Generative AI and CAD automation for diverse and novel mechanical

component designs under data constraints. Discover Applied Sciences, 7(4), 1-21.

https://doi.org/10.1007/s42452-025-06833-5

Li, S. et al. (2025d). Collaborative Inference and Learning between Edge SLMs and Cloud
LLMs: A Survey of Algorithms, Execution, and Open Challenges. arXiv preprint
arXiv:2507.16731.

https://doi.org/10.48550/arXiv.2507.16731

Li, X. et al. (2025e). LLM4CAD: Multimodal Large Language Models for Three-Dimensional

Computer-Aided Design Generation. Journal of Computing and Information Science in

Engineering, 25(2), 021005. https://doi.org/10.1115/1.4067085

Li, M. et al. (2025f). Specllm: Exploring generation and review of vlsi design specification with

large language model. In 2025 International Symposium of Electronics Design Automation

(ISEDA) (pp. 749-755). IEEE. https://doi.org/10.1109/ISEDA65950.2025.11100410

Li, Z. et al. (2025g). From system 1 to system 2: A survey of reasoning large language models.
arXiv preprint arXiv:2502.17419.

https://doi.org/10.48550/arXiv.2502.17419

Liang, K. et al. (2024a). A survey of knowledge graph reasoning on graph types: Static,

dynamic, and multi-modal. IEEE Transactions on Pattern Analysis and Machine Intelligence,

46(12), 9456-9478. https://doi.org/10.1109/TPAMI.2024.3417451

Liang, X. et al. (2024b). A survey of LLM-augmented knowledge graph construction and

application in complex product design. Procedia CIRP, 128, 870-875.

https://doi.org/10.1016/j.procir.2024.07.069

Liang, X. et al. (2025). A survey of large language model-augmented knowledge graphs for

advanced complex product design. Journal of Manufacturing Systems, 80, 883-901.

https://doi.org/10.1016/j.jmsy.2025.04.016

https://doi.org/10.48550/arXiv.2501.07391
https://doi.org/10.48550/arXiv.2501.07391
https://doi.org/10.1007/s42452-025-06833-5
https://doi.org/10.48550/arXiv.2507.16731
https://doi.org/10.48550/arXiv.2507.16731
https://doi.org/10.1115/1.4067085
https://doi.org/10.1109/ISEDA65950.2025.11100410
https://doi.org/10.48550/arXiv.2502.17419
https://doi.org/10.48550/arXiv.2502.17419
https://doi.org/10.1109/TPAMI.2024.3417451
https://doi.org/10.1016/j.procir.2024.07.069
https://doi.org/10.1016/j.jmsy.2025.04.016

108 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

Liepert, C. et al. (2024). Digital Twin Data Provision Within Engineering: An AAS PLM

Implementation Ensuring Interoperability. In International Conference on Subject-Oriented

Business Process Management (pp. 3-23). Cham: Springer Nature Switzerland.

https://doi.org/10.1007/978-3-031-72041-3_1

Liu, M. et al. (2023a). Chipnemo: Domain-adapted llms for chip design. arXiv preprint

arXiv:2311.00176. https://doi.org/10.48550/arXiv.2311.00176

Liu, V. et al. (2023b). 3DALL-E: Integrating text-to-image AI in 3D design workflows.

In Proceedings of the 2023 ACM designing interactive systems conference (pp. 1955-1977).

https://doi.org/10.1145/3563657.3596098

Liu, M. et al. (2024a). An empirical study of the code generation of safety-critical software

using llms. Applied Sciences, 14(3), 1046. https://doi.org/10.3390/app14031046

Liu, Y. et al. (2024b). Are LLMs good at structured outputs? A benchmark for evaluating

structured output capabilities in LLMs. Information Processing & Management, 61(5), 103809.

https://doi.org/10.1016/j.ipm.2024.103809

Liu, Y. et al. (2025). LLM-ACNC: Aerospace Requirement Texts Knowledge Graph Construction

Utilizing Large Language Model. Aerospace, 12(6), 463.

https://doi.org/10.3390/aerospace12060463

Loconte, D. et al. (2024). Expanding the cloud-to-edge continuum to the IoT in serverless

federated learning. Future Generation Computer Systems, 155, 447-462.

https://doi.org/10.1016/j.future.2024.02.024

Longshore, R. et al. (2024). Leveraging Generative AI to Modify and Query MBSE Models.

Acquisition Research Program. https://dair.nps.edu/handle/123456789/5237 [Accessed:

26.10.25]

Lubos, S. et al. (2024). Leveraging LLMs for the quality assurance of software requirements. In

2024 IEEE 32nd International Requirements Engineering Conference (RE) (pp. 389-397). IEEE.

https://doi.org/10.1109/RE59067.2024.00046

https://doi.org/10.1007/978-3-031-72041-3_1
https://doi.org/10.48550/arXiv.2311.00176
https://doi.org/10.1145/3563657.3596098
https://doi.org/10.3390/app14031046
https://doi.org/10.1016/j.ipm.2024.103809
https://doi.org/10.3390/aerospace12060463
https://doi.org/10.1016/j.future.2024.02.024
https://dair.nps.edu/handle/123456789/5237
https://doi.org/10.1109/RE59067.2024.00046

109 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

Luo, H. et al. (2024). Large language model-based code generation for the control of

construction assembly robots: A hierarchical generation approach. Developments in the Built

Environment, 19, 100488. https://doi.org/10.1016/j.dibe.2024.100488

Luo, H. et al. (2025). Graph-R1: Towards Agentic GraphRAG Framework via End-to-end
Reinforcement Learning. arXiv preprint arXiv:2507.21892.

https://doi.org/10.48550/arXiv.2507.21892

Luttmer, J. et al. (2021). Representation and application of digital standards using knowledge

graphs. Proceedings of the Design Society, 1, 2551-2560.

https://doi.org/10.1017/pds.2021.516

Ma, R. et al. (2024a). Verilogreader: Llm-aided hardware test generation. In 2024 IEEE LLM
Aided Design Workshop (LAD) (pp. 1-5). IEEE.

https://doi.org/10.48550/arXiv.2406.04373

Ma, Z. et al. (2024b). Llmparser: An exploratory study on using large language models for log
parsing. In Proceedings of the IEEE/ACM 46th International Conference on Software
Engineering (pp. 1-13).

https://doi.org/10.48550/arXiv.2404.18001

Madireddy, S. et al. (2025). Large Language Model-Driven Code Compliance Checking in
Building Information Modeling. Electronics, 14(11), 2146.

https://doi.org/10.48550/arXiv.2506.20551

Mahadevkar, S. V. et al. (2024). Exploring AI-driven approaches for unstructured document

analysis and future horizons. Journal of Big Data, 11(1), 92. https://doi.org/10.1186/s40537-

024-00948-z

Maharjan, R. et al. (2023). Benchmarking message queues. In Telecom (Vol. 4, No. 2, pp. 298-

312). MDPI. https://doi.org/10.3390/telecom4020018

Majigi, M. U. et al. (2025). Big data transfer service architecture for cloud data centers:

problems, methods, applications, and future trends. Discover Computing, 28(1), 1-41.

https://doi.org/10.1007/s10791-025-09682-3

Masoudifard, A. et al. (2024). Leveraging Graph-RAG and Prompt Engineering to Enhance
LLM-Based Automated Requirement Traceability and Compliance Checks. arXiv preprint

arXiv:2412.08593. https://doi.org/10.48550/arXiv.2412.08593

https://doi.org/10.1016/j.dibe.2024.100488
https://doi.org/10.48550/arXiv.2507.21892
https://doi.org/10.48550/arXiv.2507.21892
https://doi.org/10.1017/pds.2021.516
https://doi.org/10.48550/arXiv.2406.04373
https://doi.org/10.48550/arXiv.2406.04373
https://doi.org/10.48550/arXiv.2404.18001
https://doi.org/10.48550/arXiv.2404.18001
https://doi.org/10.48550/arXiv.2506.20551
https://doi.org/10.48550/arXiv.2506.20551
https://doi.org/10.3390/telecom4020018
https://doi.org/10.1007/s10791-025-09682-3
https://doi.org/10.48550/arXiv.2412.08593

110 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

Massoudi, S., & Fuge, M. (2025). Agentic Large Language Models for Conceptual Systems

Engineering and Design. arXiv preprint arXiv:2507.08619.

https://doi.org/10.48550/arXiv.2507.08619

Mavromatis, C., & Karypis, G. (2024). GNN-RAG: Graph neural retrieval for large language
model reasoning. arXiv preprint arXiv:2405.20139.

https://doi.org/10.48550/arXiv.2405.20139

Mehlstäubl, J. et al. (2022). Using machine learning for product portfolio management: a

methodical approach to predict values of product attributes for multi-variant product

portfolios. Proceedings of the Design Society, 2, 1659-1668.

https://doi.org/10.1017/pds.2022.168

Mehmood, Y. et al. (2024). MLOps critical success factors-A systematic literature review.

VFAST Transactions on Software Engineering, 12(1), 183-209.

https://doi.org/10.21015/vtse.v12i1.1747

Mei, L. et al. (2025). A Survey of Context Engineering for Large Language Models. arXiv

preprint arXiv:2507.13334. https://doi.org/10.48550/arXiv.2507.13334

Meng, Y., & Ban, A. (2024). Automated UML Class Diagram Generation from Textual

Requirements Using NLP Techniques. JOIV: International Journal on Informatics Visualization,

8(3-2), 1905-1915. http://dx.doi.org/10.62527/joiv.8.3-2.3482

Milchevski, D. et al. (2025). Multi-Step Generation of Test Specifications using Large

Language Models for System-Level Requirements. In Proceedings of the 63rd Annual Meeting

of the Association for Computational Linguistics (Volume 6: Industry Track) (pp. 132-146).

https://doi.org/10.18653/v1/2025.acl-industry.11

Mishra, S. et al. (2024). An AI-driven data mesh architecture enhancing decision-making in
infrastructure construction and public procurement. arXiv preprint arXiv:2412.00224.

https://doi.org/10.48550/arXiv.2412.00224

Möltner, T. et al. (2025). Creation, Evaluation and Self-Validation of Simulation Models with

Large Language Models. (PrePrint) Research Square. https://doi.org/10.21203/rs.3.rs-

6566994/v1

https://doi.org/10.48550/arXiv.2507.08619
https://doi.org/10.48550/arXiv.2405.20139
https://doi.org/10.48550/arXiv.2405.20139
https://doi.org/10.1017/pds.2022.168
https://doi.org/10.21015/vtse.v12i1.1747
https://doi.org/10.48550/arXiv.2507.13334
https://dx.doi.org/10.62527/joiv.8.3-2.3482
https://doi.org/10.18653/v1/2025.acl-industry.11
https://doi.org/10.48550/arXiv.2412.00224
https://doi.org/10.48550/arXiv.2412.00224
https://doi.org/10.21203/rs.3.rs-6566994/v1
https://doi.org/10.21203/rs.3.rs-6566994/v1

111 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

Mohammed, S. et al. (2025). The effects of data quality on machine learning performance on

tabular data. Information Systems, 132, 102549. https://doi.org/10.1016/j.is.2025.102549

Mottaghian, S. et al. (2025). Scheitert Systems Engineering an seiner eigenen Komplexität?

Wie KI die operative Produktentwicklung beflügelt. Zeitschrift für wirtschaftlichen

Fabrikbetrieb, 120(s1), 90-95. https://doi.org/10.1515/zwf-2025-0008

Muttillo, V. et al. (2024). Towards synthetic trace generation of modeling operations using in-

context learning approach. In Proceedings of the 39th IEEE/ACM International Conference on

Automated Software Engineering (pp. 619-630). https://doi.org/10.1145/3691620.3695058

Naeem, Z. A. et al. (2024). RetClean: Retrieval-Based Data Cleaning Using LLMs and Data

Lakes. Proceedings of the VLDB Endowment, 17(12), 4421-4424.

https://doi.org/10.14778/3685800.3685890

Narayan, A. et al. (2022). Can foundation models wrangle your data?. arXiv preprint

arXiv:2205.09911. https://doi.org/10.48550/arXiv.2205.09911

Nau, S. et al. (2025). SPICEAssistant: LLM using SPICE Simulation Tools for Schematic Design
of Switched-Mode Power Supplies. arXiv preprint arXiv:2507.10639.

https://doi.org/10.48550/arXiv.2507.10639

Ni, B. et al. (2025a). Towards trustworthy knowledge graph reasoning: An uncertainty aware
perspective. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 39, No. 12,
pp. 12417-12425).

https://doi.org/10.48550/arXiv.2410.08985

Ni, J. et al. (2025b). CADDesigner: Conceptual Design of CAD Models Based on General-
Purpose Agent. arXiv preprint arXiv:2508.01031.

https://doi.org/10.48550/arXiv.2508.01031

Nielsen, M. K. et al. (2024). Industrial R&D project portfolio selection method using a multi-

objective optimization program: A conceptual quantitative framework. Journal of Industrial

Engineering and Management, 17(1), 217-234. https://doi.org/10.3926/jiem.6552

https://doi.org/10.1016/j.is.2025.102549
https://doi.org/10.1515/zwf-2025-0008
https://doi.org/10.1145/3691620.3695058
https://doi.org/10.14778/3685800.3685890
https://doi.org/10.48550/arXiv.2205.09911
https://doi.org/10.48550/arXiv.2507.10639
https://doi.org/10.48550/arXiv.2507.10639
https://doi.org/10.48550/arXiv.2410.08985
https://doi.org/10.48550/arXiv.2410.08985
https://doi.org/10.48550/arXiv.2508.01031
https://doi.org/10.48550/arXiv.2508.01031
https://doi.org/10.3926/jiem.6552

112 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

Ning, F. et al. (2025). A review and assessment of 3D CAD model retrieval in machine-part

design. International Journal of Computer Integrated Manufacturing, 38(6), 752-774.

https://doi.org/10.1080/0951192X.2024.2382196

Niu, F. et al. (2025). TVR: Automotive System Requirement Traceability Validation and
Recovery Through Retrieval-Augmented Generation. arXiv preprint arXiv:2504.15427.

https://doi.org/10.48550/arXiv.2504.15427

Norheim, J. et al. (2024). Challenges in applying large language models to requirements

engineering tasks. Design Science, 10, e16. https://doi.org/10.1017/dsj.2024.8

Nouri, A. et al. (2024). Engineering safety requirements for autonomous driving with large

language models. In 2024 IEEE 32nd International Requirements Engineering Conference (RE)

(pp. 218-228). IEEE. https://doi.org/10.1109/RE59067.2024.00029

Nouri, A. et al. (2025). On Simulation-Guided LLM-based Code Generation for Safe
Autonomous Driving Software. arXiv preprint arXiv:2504.02141.

https://doi.org/10.48550/arXiv.2504.02141

Ocker, F. et al. (2025). From idea to CAD: a language model-driven multi-agent system for
collaborative design. arXiv preprint arXiv:2503.04417.

https://doi.org/10.48550/arXiv.2503.04417

Otto, B. (2011). Data governance. Business & Information Systems Engineering, 3(4), 241-244.

https://doi.org/10.1007/s12599-011-0162-8

Pahune, S. et al. (2025). The Importance of AI Data Governance in Large Language Models.

Big Data and Cognitive Computing, 9(6), 147. https://doi.org/10.3390/bdcc9060147

Paliwal, G. et al. (2024). Accelerating time-to-market: the role of generative AI in product

development. In 2024 IEEE Colombian Conference on Communications and Computing

(COLCOM) (pp. 1-9). IEEE. https://doi.org/10.1109/COLCOM62950.2024.10720255

Pan, J. et al. (2025). A survey of research in large language models for electronic design

automation. ACM Transactions on Design Automation of Electronic Systems, 30(3), 1-21.

https://doi.org/10.1145/3715324

https://doi.org/10.1080/0951192X.2024.2382196
https://doi.org/10.48550/arXiv.2504.15427
https://doi.org/10.48550/arXiv.2504.15427
https://doi.org/10.1017/dsj.2024.8
https://doi.org/10.1109/RE59067.2024.00029
https://doi.org/10.48550/arXiv.2504.02141
https://doi.org/10.48550/arXiv.2504.02141
https://doi.org/10.48550/arXiv.2503.04417
https://doi.org/10.48550/arXiv.2503.04417
https://doi.org/10.1007/s12599-011-0162-8
https://doi.org/10.3390/bdcc9060147
https://doi.org/10.1109/COLCOM62950.2024.10720255
https://doi.org/10.1145/3715324

113 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

Pandey, S. et al. (2025). OpenFOAMGPT: A retrieval-augmented large language model (LLM)

agent for OpenFOAM-based computational fluid dynamics. Physics of Fluids, 37(3).

https://doi.org/10.1063/5.0257555

Panta, N. P. et al. (2025). MEDA: A Multi-Agent System For Parametric CAD Model Creation.

https://www.researchgate.net/publication/394977611_MEDA_A_Multi-

Agent_System_For_Parametric_CAD_Model_Creation [Accessed: 26.10.25]

Patel, A. et al. (2024). Easing adoption of model based system engineering with application of

generative ai. In 2024 IEEE Space, Aerospace and Defence Conference (SPACE) (pp. 871-874).

IEEE. https://doi.org/10.1109/SPACE63117.2024.10667868

Patil, M. S. et al. (2024). Towards specification-driven LLM-based generation of embedded

automotive software. In International Conference on Bridging the Gap between AI and Reality

(pp. 125-144). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-75434-

0_9

Peng, B. et al. (2024). Graph retrieval-augmented generation: A survey. arXiv preprint

arXiv:2408.08921. https://doi.org/10.48550/arXiv.2408.08921

Petrovic, N. et al. (2025). Survey of GenAI for Automotive Software Development: From
Requirements to Executable Code. arXiv preprint arXiv:2507.15025.

https://doi.org/10.48550/arXiv.2507.15025

Picard, C. et al. (2025). From concept to manufacturing: Evaluating vision-language models

for engineering design. Artificial Intelligence Review, 58(9), 288.

https://doi.org/10.1007/s10462-025-11290-y

Plettenberg, P. et al. (2025). Graph Neural Networks for Automatic Addition of Optimizing
Components in Printed Circuit Board Schematics. arXiv preprint arXiv:2506.10577.

https://doi.org/10.48550/arXiv.2506.10577

Poulsen, V. V. et al. (2025). Advancing systems engineering with artificial intelligence: a

review on the future potential, challenges and pathways. Proceedings of the Design Society, 5,

359-368. https://doi.org/10.1017/pds.2025.10050

https://doi.org/10.1063/5.0257555
https://www.researchgate.net/publication/394977611_MEDA_A_Multi-Agent_System_For_Parametric_CAD_Model_Creation
https://www.researchgate.net/publication/394977611_MEDA_A_Multi-Agent_System_For_Parametric_CAD_Model_Creation
https://doi.org/10.1109/SPACE63117.2024.10667868
https://doi.org/10.1007/978-3-031-75434-0_9
https://doi.org/10.1007/978-3-031-75434-0_9
https://doi.org/10.48550/arXiv.2408.08921
https://doi.org/10.48550/arXiv.2507.15025
https://doi.org/10.48550/arXiv.2507.15025
https://doi.org/10.1007/s10462-025-11290-y
https://doi.org/10.48550/arXiv.2506.10577
https://doi.org/10.48550/arXiv.2506.10577
https://doi.org/10.1017/pds.2025.10050

114 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

prostep ivip (2025). Smart Systems Engineering – Collaborative Simulation-Based

Engineering. Prostep ivip SmartSE Recommendation 2025 PSI 11.

https://www.prostep.org/fileadmin/prod-pay-download-8c1d/PSI11_RecV4_Final_aw.pdf

[Accessed: 26.10.25]

PTC (2024). What Manufacturers Need to Know About Generative Design - A technology

whitepaper for executives. https://www.ptc.com/en/resources/cad/ebook/what-

manufacturers-need-to-know-about-generative-design [Accessed: 26.10.25]

Pu, Y. et al. (2024). Customized retrieval augmented generation and benchmarking for EDA

tool documentation QA. In Proceedings of the 43rd IEEE/ACM International Conference on

Computer-Aided Design (pp. 1-9). https://doi.org/10.1145/3676536.3676730

Qin, S. et al. (2024). Intelligent design and optimization system for shear wall structures

based on large language models and generative artificial intelligence. Journal of Building

Engineering, 95, 109996. https://doi.org/10.1016/j.jobe.2024.109996

Qin, F. et al. (2025). CADGCL: unsupervised retrieval of CAD models via boundary

representations. The Visual Computer, 1-13. https://doi.org/10.1007/s00371-025-03949-y

Quan, Y. et al. (2024). Self-supervised Graph Neural Network for Mechanical CAD Retrieval.

arXiv preprint arXiv:2406.08863. https://doi.org/10.48550/arXiv.2406.08863

Ray, P. P. (2025). A Review on Agent-to-Agent Protocol: Concept, State-of-the-art, Challenges

and Future Directions. Authorea Preprints.

https://doi.org/10.36227/techrxiv.174612014.42157096/v1

Reinpold, L. M. et al. (2024). Exploring LLMs for Verifying Technical System Specifications

Against Requirements. In 2024 IEEE 3rd Industrial Electronics Society Annual On-Line

Conference (ONCON) (pp. 1-6). IEEE. https://doi.org/10.1109/ONCON62778.2024.10931625

Riche, N. et al. (2025). AI-Instruments: Embodying Prompts as Instruments to Abstract &

Reflect Graphical Interface Commands as General-Purpose Tools. In Proceedings of the 2025

CHI Conference on Human Factors in Computing Systems (pp. 1-18).

https://doi.org/10.1145/3706598.3714259

https://www.prostep.org/fileadmin/prod-pay-download-8c1d/PSI11_RecV4_Final_aw.pdf
https://www.ptc.com/en/resources/cad/ebook/what-manufacturers-need-to-know-about-generative-design
https://www.ptc.com/en/resources/cad/ebook/what-manufacturers-need-to-know-about-generative-design
https://doi.org/10.1145/3676536.3676730
https://doi.org/10.1016/j.jobe.2024.109996
https://doi.org/10.1007/s00371-025-03949-y
https://doi.org/10.48550/arXiv.2406.08863
https://doi.org/10.36227/techrxiv.174612014.42157096/v1
https://doi.org/10.1109/ONCON62778.2024.10931625
https://doi.org/10.1145/3706598.3714259

115 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

Ronanki, K. et al. (2023). Investigating ChatGPT’s potential to assist in requirements

elicitation processes. In 2023 49th Euromicro Conference on Software Engineering and

Advanced Applications (SEAA) (pp. 354-361). IEEE.

https://doi.org/10.1109/SEAA60479.2023.00061

Ryś, A. et al. (2024). Model management to support systems engineering workflows using

ontology-based knowledge graphs. Journal of Industrial Information Integration, 42, 100720.

https://doi.org/10.1016/j.jii.2024.100720

Rzig, D. E. et al. (2024). Empirical Analysis on CI/CD Pipeline Evolution in Machine Learning
Projects. arXiv preprint arXiv:2403.12199.

https://doi.org/10.48550/arXiv.2403.12199

Sadri-Moshkenani, Z. et al. (2022). Survey on test case generation, selection and

prioritization for cyber‐physical systems. Software Testing, Verification and Reliability, 32(1),

e1794. https://doi.org/10.1002/stvr.1794

SAE (2014). Taxonomy and definitions for terms related to on-road motor vehicle automated

driving systems (On-Road Automated Vehicle Standards Committee). SAE Standard J, 3016, 1.

https://www.sae.org/standards/j3016_202104-taxonomy-definitions-terms-related-

driving-automation-systems-road-motor-vehicles [Accessed: 26.10.25]

Said, A. et al. (2023). Circuit design completion using graph neural networks. Neural

Computing and Applications, 35(16), 12145-12157. https://doi.org/10.1007/s00521-023-

08346-x

Saleem, S. et al. (2025). PassionNet: An Innovative Framework for Duplicate and Conflicting

Requirements Identification. Expert Systems with Applications, 128684.

https://doi.org/10.1016/j.eswa.2025.128684

Samhan, A. et al. (2024). A Review of AI-Assisted Impact Analysis for Software Requirements

Change: Challenges and Future Directions. In 2024 25th International Arab Conference on

Information Technology (ACIT) (pp. 1-13). IEEE.

https://doi.org/10.1109/ACIT62805.2024.10877072

Schmid, L. et al. (2025). Software Architecture Meets LLMs: A Systematic Literature
Review. arXiv preprint arXiv:2505.16697.

https://doi.org/10.48550/arXiv.2505.16697

https://doi.org/10.1109/SEAA60479.2023.00061
https://doi.org/10.1016/j.jii.2024.100720
https://doi.org/10.48550/arXiv.2403.12199
https://doi.org/10.48550/arXiv.2403.12199
https://doi.org/10.1002/stvr.1794
https://www.sae.org/standards/j3016_202104-taxonomy-definitions-terms-related-driving-automation-systems-road-motor-vehicles
https://www.sae.org/standards/j3016_202104-taxonomy-definitions-terms-related-driving-automation-systems-road-motor-vehicles
https://doi.org/10.1007/s00521-023-08346-x
https://doi.org/10.1007/s00521-023-08346-x
https://doi.org/10.1016/j.eswa.2025.128684
https://doi.org/10.1109/ACIT62805.2024.10877072
https://doi.org/10.48550/arXiv.2505.16697
https://doi.org/10.48550/arXiv.2505.16697

116 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

Schneider, J. et al. (2024). The lakehouse: State of the art on concepts and technologies. SN

Computer Science, 5(5), 449. https://doi.org/10.1007/s42979-024-02737-0

Sevenhuijsen, M. et al. (2025). VeCoGen: Automating Generation of Formally Verified C Code

with Large Language Models. In 2025 IEEE/ACM 13th International Conference on Formal

Methods in Software Engineering (FormaliSE) (pp. 101-112). IEEE.

https://doi.org/10.1109/FormaliSE66629.2025.00017

Shao, Y. et al. (2025). Future of Work with AI Agents: Auditing Automation and Augmentation
Potential across the US Workforce. arXiv preprint arXiv:2506.06576.

https://doi.org/10.48550/arXiv.2506.06576

Shi, F. et al. (2025). A stepwise intelligence generative method for structured maintenance

guidance documents based on knowledge graph augmented LLM. Advanced Engineering

Informatics, 67, 103523. https://doi.org/10.1016/j.aei.2025.103523

Shin, S. et al. (2023). Topology optimization via machine learning and deep learning: a review.

Journal of Computational Design and Engineering, 10(4), 1736-1766.

https://doi.org/10.1093/jcde/qwad072

Singh, P. (2023). Systematic review of data-centric approaches in artificial intelligence and

machine learning. Data Science and Management, 6(3), 144-157.

https://doi.org/10.1016/j.dsm.2023.06.001

Siemens (2024). Generative Design. https://www.sw.siemens.com/en-

US/technology/generative-design/ [Accessed: 26.10.25]

Somasekharan, N. et al. (2025). CFD-LLMBench: A Benchmark Suite for Evaluating Large
Language Models in Computational Fluid Dynamics. arXiv preprint arXiv:2509.20374.

https://doi.org/10.48550/arXiv.2509.20374

Song, Q. et al. (2025). Synthetic versus real: an analysis of critical scenarios for autonomous

vehicle testing. Automated Software Engineering, 32(2), 37. https://doi.org/10.1007/s10515-

025-00499-4

https://doi.org/10.1109/FormaliSE66629.2025.00017
https://doi.org/10.48550/arXiv.2506.06576
https://doi.org/10.48550/arXiv.2506.06576
https://doi.org/10.1016/j.aei.2025.103523
https://doi.org/10.1093/jcde/qwad072
https://doi.org/10.1016/j.dsm.2023.06.001
https://www.sw.siemens.com/en-US/technology/generative-design/
https://www.sw.siemens.com/en-US/technology/generative-design/
https://doi.org/10.48550/arXiv.2509.20374
https://doi.org/10.48550/arXiv.2509.20374
https://doi.org/10.1007/s10515-025-00499-4
https://doi.org/10.1007/s10515-025-00499-4

117 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

Sovrano, F. et al. (2025). Simplifying software compliance: AI technologies in drafting

technical documentation for the AI Act. Empirical Software Engineering, 30(3), 91.

https://doi.org/10.1007/s10664-025-10645-x

Strittmatter, J. (2025). Retrieval-Augmented Generation (RAG): Strategies and possible

Applications in Software Engineering. https://doi.org/10.5445/IR/1000181162

Subramanian, S. et al. (2025). Small language models (SLMs) can still pack a punch: A survey.

arXiv preprint arXiv:2501.05465. https://doi.org/10.48550/arXiv.2501.05465

Sui, Y. et al. (2025). Stop overthinking: A survey on efficient reasoning for large language

models. arXiv preprint arXiv:2503.16419. https://doi.org/10.48550/arXiv.2503.16419

Sultan, B., & Apvrille, L. (2024). AI-driven consistency of SysML diagrams. In Proceedings of

the ACM/IEEE 27th International Conference on Model Driven Engineering Languages and

Systems (pp. 149-159). https://doi.org/10.1145/3640310.3674079

Sunil, P. & Sills, R. B. (2024). FE-PINNs: finite-element-based physics-informed neural
networks for surrogate modeling. arXiv preprint arXiv:2412.07126.

https://doi.org/10.48550/arXiv.2412.07126

Steffen, D. et al. (2025). Code the Product–Vision für die Produktentstehung der Zukunft.

Zeitschrift für wirtschaftlichen Fabrikbetrieb, 120(s1), 55-60. https://doi.org/10.1515/zwf-

2024-0172

Tao, L. et al. (2024). LLM-R: A Framework for Domain-Adaptive Maintenance Scheme
Generation Combining Hierarchical Agents and RAG. arXiv preprint arXiv:2411.04476.

https://doi.org/10.48550/arXiv.2411.04476

Thakur, S. et al. (2023). Autochip: Automating hdl generation using llm feedback. arXiv

preprint arXiv:2311.04887. https://doi.org/10.48550/arXiv.2311.04887

Theodorakopoulos, L. et al. (2024). A state-of-the-art review in big data management

engineering: Real-life case studies, challenges, and future research directions. Eng, 5(3), 1266-

1297. https://doi.org/10.3390/eng5030068

https://doi.org/10.1007/s10664-025-10645-x
https://doi.org/10.5445/IR/1000181162
https://doi.org/10.48550/arXiv.2501.05465
https://doi.org/10.48550/arXiv.2503.16419
https://doi.org/10.1145/3640310.3674079
https://doi.org/10.48550/arXiv.2412.07126
https://doi.org/10.48550/arXiv.2412.07126
https://doi.org/10.1515/zwf-2024-0172
https://doi.org/10.1515/zwf-2024-0172
https://doi.org/10.48550/arXiv.2411.04476
https://doi.org/10.48550/arXiv.2411.04476
https://doi.org/10.48550/arXiv.2311.04887
https://doi.org/10.3390/eng5030068

118 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

Tian, R. et al. (2024). Debugbench: Evaluating debugging capability of large language

models. arXiv preprint arXiv:2401.04621. https://doi.org/10.48550/arXiv.2401.04621

Tikayat Ray, A. et al. (2024). Development of a language model for named-entity-recognition

in aerospace requirements. Journal of Aerospace Information Systems, 21(6), 489-499.

https://doi.org/10.2514/1.I011251

Timperley, L. R. et al. (2025). Assessment of large language models for use in generative

design of model based spacecraft system architectures. Journal of Engineering Design, 1-21.

https://doi.org/10.1080/09544828.2025.2453401

Tinnes, C. et al. (2024). From Unstructured Product Descriptions to Structured Data for

Industry 4.0 with ChatGPT. In 2024 IEEE 7th International Conference on Industrial Cyber-

Physical Systems (ICPS) (pp. 1-8). IEEE. https://doi.org/10.1109/ICPS59941.2024.10639992

Tong, G. et al. (2024). An improved model combining knowledge graph and GCN for PLM

knowledge recommendation. Soft Computing, 28(6), 5557-5575.

https://doi.org/10.1007/s00500-023-09340-0

Tran, K. T. et al. (2025). Multi-agent collaboration mechanisms: A survey of llms. arXiv preprint

arXiv:2501.06322. https://doi.org/10.48550/arXiv.2501.06322

Treshcheva, E. et al. (2025). Test2Text: AI-Based Mapping between Autogenerated Tests and

Atomic Requirements. In 2025 IEEE International Conference on Software Testing, Verification

and Validation Workshops (ICSTW) (pp. 17-20). IEEE.

https://doi.org/10.1109/ICSTW64639.2025.10962519

Tsai, Y. et al. (2024). Rtlfixer: Automatically fixing rtl syntax errors with large language model.

In Proceedings of the 61st ACM/IEEE Design Automation Conference (pp. 1-6).

https://doi.org/10.1145/3649329.3657353

Vaicenavičius, J. et al. (2025). SysIDE: SysML v2 textual editing and analysis system: overview

and applications. CEAS Space Journal, 1-7. https://doi.org/10.1007/s12567-025-00595-x

VDI (2021). VDI/VDE 2206 „Entwicklung mechatronischer und cyber-physischer Systeme“.

https://www.vdi.de/richtlinien/programme-zu-vdi-richtlinien/vdi-2206 [Accessed:

26.10.25]

https://doi.org/10.48550/arXiv.2401.04621
https://doi.org/10.2514/1.I011251
https://doi.org/10.1080/09544828.2025.2453401
https://doi.org/10.1109/ICPS59941.2024.10639992
https://doi.org/10.1007/s00500-023-09340-0
https://doi.org/10.48550/arXiv.2501.06322
https://doi.org/10.1109/ICSTW64639.2025.10962519
https://doi.org/10.1145/3649329.3657353
https://doi.org/10.1007/s12567-025-00595-x
https://www.vdi.de/richtlinien/programme-zu-vdi-richtlinien/vdi-2206

119 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

Vogelsang, A., & Fischbach, J. (2025). Using large language models for natural language

processing tasks in requirements engineering: A systematic guideline. In Handbook on Natural

Language Processing for Requirements Engineering (pp. 435-456). Cham: Springer Nature

Switzerland. https://doi.org/10.1007/978-3-031-73143-3_16

Von Heissen, O. et al. (2024). Toward Intelligent Generation of System Architectures. DS 130:

Proceedings of NordDesign 2024, Reykjavik, Iceland, 12th-14th August 2024, 504-513.

https://doi.org/10.35199/NORDDESIGN2024.54

Von Scherenberg, F. et al. (2024). Data sovereignty in information systems. Electronic

Markets, 34(1), 15. https://doi.org/10.1007/s12525-024-00693-4

Voria, G. et al. (2025). RECOVER: Toward Requirements Generation from Stakeholders’

Conversations. IEEE Transactions on Software Engineering.

https://doi.org/10.1109/TSE.2025.3572056

Wan, Y. et al. (2024). Making knowledge graphs work for smart manufacturing: Research

topics, applications and prospects. Journal of manufacturing systems, 76, 103-132.

https://doi.org/10.1016/j.jmsy.2024.07.009

Wang, J. et al. (2024a). Software testing with large language models: Survey, landscape, and

vision. IEEE Transactions on Software Engineering.

https://doi.org/10.1109/TSE.2024.3368208

Wang, J. et al. (2024b). Large language models-guided dynamic adaptation for temporal
knowledge graph reasoning. Advances in Neural Information Processing Systems, 37, 8384-

8410. https://doi.org/10.48550/arXiv.2405.14170

Wang, L. et al. (2024c). A survey on large language model based autonomous

agents. Frontiers of Computer Science, 18(6), 186345. https://doi.org/10.1007/s11704-024-

40231-1

Wang, Y. et al. (2025a). From code generation to software testing: AI Copilot with context-

based RAG. IEEE Software. https://doi.org/10.1109/MS.2025.3549628

https://doi.org/10.1007/978-3-031-73143-3_16
https://doi.org/10.35199/NORDDESIGN2024.54
https://doi.org/10.1007/s12525-024-00693-4
https://doi.org/10.1109/TSE.2025.3572056
https://doi.org/10.1016/j.jmsy.2024.07.009
https://doi.org/10.1109/TSE.2024.3368208
https://doi.org/10.48550/arXiv.2405.14170
https://doi.org/10.1007/s11704-024-40231-1
https://doi.org/10.1007/s11704-024-40231-1

120 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

Wang, Z. et al. (2025b). An LLM-enabled Multi-Agent Autonomous Mechatronics Design
Framework. arXiv preprint arXiv:2504.14681.

https://doi.org/10.48550/arXiv.2504.14681

Wawrzik, F. et al. (2025). KGG4SE: A Knowledge Graph Generation Framework for Systems

Engineering. https://www.semantic-web-journal.net/system/files/swj3844.pdf [Accessed:

26.10.25]

Williams, C. K., & Karahanna, E. (2013). Causal explanation in the coordinating process: A

critical realist case study of federated IT governance structures. Mis Quarterly, 933-964.

https://www.jstor.org/stable/43826007 [Accessed: 26.10.25]

Wu, H. et al. (2024a). Chateda: A large language model powered autonomous agent for

eda. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 43(10),

3184-3197. https://doi.org/10.1109/TCAD.2024.3383347

Wu, J. et al. (2024b). A comprehensive analysis of challenges and strategies for software

release notes on GitHub. Empirical Software Engineering, 29(5), 104.

https://doi.org/10.1007/s10664-024-10486-0

Wu, S. et al. (2025). Cognitive Digital Thread Tool-Chain for Model Versioning in Model-Based

Systems Engineering. Advanced Engineering Informatics, 67, 103490.

https://doi.org/10.1016/j.aei.2025.103490

Wynn-Williams, S. et al. (2025). Can Generative AI Produce Test Cases? An Experience from

the Automotive Domain. In Proceedings of the 33rd ACM International Conference on the

Foundations of Software Engineering (pp. 456-467).

https://doi.org/10.1145/3696630.3728568

Xiao, Y. et al. (2024). Stronger, cheaper and demonstration-free log parsing with LLMs. arXiv

preprint arXiv:2406.06156. https://doi.org/10.48550/arXiv.2406.06156

Xiao, Y. et al. (2025). GraphRAG-Bench: Challenging Domain-Specific Reasoning for
Evaluating Graph Retrieval-Augmented Generation. arXiv preprint arXiv:2506.02404.

https://doi.org/10.48550/arXiv.2506.02404

Xie, X. et al. (2024). Knowledge graph-based in-context learning for advanced fault diagnosis

in sensor networks. Sensors, 24(24), 8086. https://doi.org/10.3390/s24248086

https://doi.org/10.48550/arXiv.2504.14681
https://doi.org/10.48550/arXiv.2504.14681
https://www.semantic-web-journal.net/system/files/swj3844.pdf
https://www.jstor.org/stable/43826007
https://doi.org/10.1109/TCAD.2024.3383347
https://doi.org/10.1016/j.aei.2025.103490
https://doi.org/10.1145/3696630.3728568
https://doi.org/10.48550/arXiv.2406.06156
https://doi.org/10.48550/arXiv.2506.02404
https://doi.org/10.48550/arXiv.2506.02404
https://doi.org/10.3390/s24248086

121 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

Xiong, X. et al. (2025). DR-RAG: Domain-Rule-based Retrieval-Augmented Generation for

aviation digital model design. Advanced Engineering Informatics, 68, 103688.

https://doi.org/10.1016/j.aei.2025.103688

Xu, J. et al. (2024). Cad-mllm: Unifying multimodality-conditioned cad generation with mllm.
arXiv preprint arXiv:2411.04954.

https://doi.org/10.48550/arXiv.2411.04954

Xu, T. et al. (2025a). AI-Integrated Framework for Enhancing High Level Architecture Design

Across System Lifecycle Stages. In 13th International Conference on Model-Based Software

and Systems Engineering. https://www.scitepress.org/Papers/2025/134442/134442.pdf

[Accessed: 26.10.25]

Xu, W. et al. (2025b). LLM-Based Agents for Tool Learning: A Survey. Data Science and

Engineering, 1-31. https://doi.org/10.1007/s41019-025-00296-9

Xu, X. et al. (2025c). RAGOps: Operating and Managing Retrieval-Augmented Generation
Pipelines. arXiv preprint arXiv:2506.03401.

https://doi.org/10.48550/arXiv.2506.03401

Yahya, M. et al. (2024). A benchmark dataset with Knowledge Graph generation for Industry

4.0 production lines. Semantic Web, 15(2), 461-479. https://doi.org/10.3233/SW-233431

Yang, W. et al. (2025). Impact and influence of modern AI in metadata management. arXiv

preprint arXiv:2501.16605. https://doi.org/10.48550/arXiv.2501.16605

Yao, J. et al. (2022). Edge-cloud polarization and collaboration: A comprehensive survey for ai.

IEEE Transactions on Knowledge and Data Engineering, 35(7), 6866-6886.

https://doi.org/10.1109/TKDE.2022.3178211

Yao, X. et al. (2024). Hdldebugger: Streamlining hdl debugging with large language models.

ACM Transactions on Design Automation of Electronic Systems.

https://doi.org/10.1145/3735638

Yue, L. et al. (2025a). Foam-agent: Towards automated intelligent cfd workflows. arXiv

preprint arXiv:2505.04997. https://doi.org/10.48550/arXiv.2505.04997

https://doi.org/10.1016/j.aei.2025.103688
https://doi.org/10.48550/arXiv.2411.04954
https://doi.org/10.48550/arXiv.2411.04954
https://www.scitepress.org/Papers/2025/134442/134442.pdf
https://doi.org/10.1007/s41019-025-00296-9
https://doi.org/10.48550/arXiv.2506.03401
https://doi.org/10.48550/arXiv.2506.03401
https://doi.org/10.3233/SW-233431
https://doi.org/10.48550/arXiv.2501.16605
https://doi.org/10.1109/TKDE.2022.3178211
https://doi.org/10.1145/3735638
https://doi.org/10.48550/arXiv.2505.04997

122 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

Yue, L. et al. (2025b). Foam-Agent 2.0: An End-to-End Composable Multi-Agent Framework for
Automating CFD Simulation in OpenFOAM. arXiv preprint arXiv:2509.18178.

https://doi.org/10.48550/arXiv.2509.18178

Zampetti, F. et al. (2023). Continuous integration and delivery practices for cyber-physical

systems: An interview-based study. ACM Transactions on Software Engineering and

Methodology, 32(3), 1-44. https://doi.org/10.1145/3571854

Zhan, S. et al. (2025). A Review on Federated Learning Architectures for Privacy-Preserving AI:

Lightweight and Secure Cloud–Edge–End Collaboration. Electronics, 14(13), 2512.

https://doi.org/10.3390/electronics14132512

Zhang, H. et al. (2023). Large language models as data preprocessors. arXiv preprint

arXiv:2308.16361. https://doi.org/10.48550/arXiv.2308.16361

Zhang, Q. et al. (2024). A Literature Review of the Digital Thread: Definition, Key

Technologies, and Applications. Systems, 12(3), 70.

https://doi.org/10.3390/systems12030070

Zhang, H., & Zhang, R. (2025). Generative artificial intelligence (AI) in built environment

design and planning–A state-of-the-art review. Progress in Engineering Science, 2(1), 100040.

https://doi.org/10.1016/j.pes.2024.100040

Zhang, L. et al. (2025a). GenAI for Simulation Model in Model-Based Systems Engineering.
arXiv preprint arXiv:2503.06422.

https://doi.org/10.48550/arXiv.2503.06422

Zhang, L. et al. (2025b). Large language models for computer-aided design: A survey. arXiv
preprint arXiv:2505.08137.

https://doi.org/10.48550/arXiv.2505.08137

Zhang, Q. et al. (2025c). A survey of graph retrieval-augmented generation for customized
large language models. arXiv preprint arXiv:2501.13958.

https://doi.org/10.48550/arXiv.2501.13958

https://doi.org/10.48550/arXiv.2509.18178
https://doi.org/10.48550/arXiv.2509.18178
https://doi.org/10.1145/3571854
https://doi.org/10.3390/electronics14132512
https://doi.org/10.48550/arXiv.2308.16361
https://doi.org/10.3390/systems12030070
https://doi.org/10.1016/j.pes.2024.100040
https://doi.org/10.48550/arXiv.2503.06422
https://doi.org/10.48550/arXiv.2503.06422
https://doi.org/10.48550/arXiv.2505.08137
https://doi.org/10.48550/arXiv.2505.08137
https://doi.org/10.48550/arXiv.2501.13958
https://doi.org/10.48550/arXiv.2501.13958

123 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

Zhang, Z. et al. (2025d). A survey on the memory mechanism of large language model-based

agents. ACM Transactions on Information Systems, 43(6), 1-47.

https://doi.org/10.1145/3748302

Zhang, L. et al. (2025e). MBSE 2.0: Toward More Integrated, Comprehensive, and Intelligent

MBSE. Systems, 13(7), 584. https://doi.org/10.3390/systems13070584

Zhang, W. et al. (2025f). MBSE Co‐Pilot: A Research Roadmap. Systems Engineering, e70011.

https://doi.org/10.1002/sys.70011

Zhang, X. et al. (2025g). Using large language models for parametric shape optimization.

Physics of Fluids, 37(8). https://doi.org/10.1063/5.0273363

Zhang, Z. (2025h). Application of deep reinforcement learning in parameter optimization and

refinement of turbulence models. Scientific Reports, 15(1), 25236.

https://doi.org/10.1038/s41598-025-00351-5

Zhang, Q. et al. (2025i). Agentic Context Engineering: Evolving Contexts for Self-Improving
Language Models. arXiv preprint arXiv:2510.04618.

https://doi.org/10.48550/arXiv.2510.04618

Zhao, P. et al. (2024). Retrieval-augmented generation for ai-generated content: A survey.

arXiv preprint arXiv:2402.19473. https://doi.org/10.48550/arXiv.2402.19473

Zhong, A. et al. (2024). Logparser-llm: Advancing efficient log parsing with large language

models. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and

Data Mining (pp. 4559-4570). https://doi.org/10.1145/3637528.3671810

Zhou, B. et al. (2024a). CausalKGPT: Industrial structure causal knowledge-enhanced large

language model for cause analysis of quality problems in aerospace product manufacturing.

Advanced Engineering Informatics, 59, 102333. https://doi.org/10.1016/j.aei.2023.102333

Zhou, Y. et al. (2024b). A survey on data quality dimensions and tools for machine learning.
arXiv preprint arXiv:2406.19614.

https://doi.org/10.48550/arXiv.2406.19614

https://doi.org/10.1145/3748302
https://doi.org/10.3390/systems13070584
https://doi.org/10.1002/sys.70011
https://doi.org/10.1063/5.0273363
https://doi.org/10.1038/s41598-025-00351-5
https://doi.org/10.48550/arXiv.2510.04618
https://doi.org/10.48550/arXiv.2402.19473
https://doi.org/10.1145/3637528.3671810
https://doi.org/10.1016/j.aei.2023.102333
https://doi.org/10.48550/arXiv.2406.19614
https://doi.org/10.48550/arXiv.2406.19614

124 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

Zhou, Z. et al. (2025). CAD-Judge: Toward Efficient Morphological Grading and Verification for
Text-to-CAD Generation. arXiv preprint arXiv:2508.04002.

https://doi.org/10.48550/arXiv.2508.04002

Zhu, J. et al. (2024). Relational Data Cleaning Meets Artificial Intelligence: A Survey. Data

Science and Engineering, 1-28. https://doi.org/10.1007/s41019-024-00266-7

Zhu, X. et al. (2025). Knowledge graph-guided retrieval augmented generation. arXiv preprint

arXiv:2502.06864. https://doi.org/10.48550/arXiv.2502.06864

Zou, X. (2020). A survey on application of knowledge graph. In Journal of Physics:

Conference Series (Vol. 1487, No. 1, p. 012016). IOP Publishing. https://doi.org/10.1088/1742-

6596/1487/1/012016

https://doi.org/10.48550/arXiv.2508.04002
https://doi.org/10.48550/arXiv.2508.04002
https://doi.org/10.1007/s41019-024-00266-7
https://doi.org/10.48550/arXiv.2502.06864
https://doi.org/10.1088/1742-6596/1487/1/012016
https://doi.org/10.1088/1742-6596/1487/1/012016

125 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

List of Abbreviations

Abbreviation Meaning

A2A Agent-to-Agent Protocol

AI Artificial Intelligence

BOM Bill of Material

CAD Computer-Aided Design

CASE Computer-Aided Software Engineering

CFD Computational Fluid Dynamics

CNN Convolutional Neural Network

DL Deep Learning

E-CAD Electrical Computer-Aided Design

EDA Electronic Design Automation

FEA Fixed Entity Architecture

FEM Finite Element Method

FL Federated Learning

GAN Generative Adversarial Network

GenAI Generative Artificial Intelligence

GNN Graph Neural Network

GTO Generative Topology Optimization

HiL Hardware-in-the-Loop

HDL Hardware Description Language

KG Knowledge Graph

LLM Large Language Model

LSTM Long Short-Term Memory

MBSE Model-based Systems Engineering

MCP Model Context Protocol

M-CAD Mechanical Computer-Aided Design

PCB Printed Circuit Board

PDM Product Data Management

PINN Physics-Informed Neural Network

PLM Product Lifecycle Management

PMT Processes, Methods & Tools

RAG Retrieval-Augmented Generation

RC Resistor-Capacity

RTE Register-Transfer Level

ROI Return on Investment

SiL Software-in-the-Loop

SLM Small Language Model

SysML System Modeling Language

UML Unified Modeling Language

126 | Copyright © 2025 Accenture, Fraunhofer & DFKI. All rights reserved.

Authors

Vlad Larichev
Manager and Industrial AI Lead at Accenture, specializing in the deployment of AI-driven

solutions across the product lifecycle. His work enhances industrial operations by

architecting intelligent systems that harness real-time data and optimize processes.

Dr.-Ing. Dirk Alexander Molitor
Engineering and AI Consultant at Accenture, focusing on data-driven product

development and engineering toolchain transformation. His work focuses heavily on AI

enablement trough data models, tool architectures, and strategic AI use case selection.

Dr.-Ing. Tobias Guggenberger
Group Lead at Fraunhofer ISST, focusing on the management and governance of inter-

organizational data and AI systems. His work advances trustworthy industrial data

ecosystems for effective collaboration and value creation.

Dr.-Ing. Marcel Altendeitering
Head of the Mobility & Smart Cities department at Fraunhofer ISST, focusing on

automated data quality management and the role of data quality for data ecosystems. His

works supports organizations leveraging the full potential of data-intensive applications.

Dr.-Ing. Daniel Porta
Group Lead at DFKI, focusing on digital transformation and future applied industrial AI.

His work centers on asset administration shells, interactive digital twins, agentic AI, and

cognitive assistants supporting humans in Industry 4.0.

Dr. rer. nat. Matthias Ziegler
Managing Director for Emerging Technology Innovation at Accenture, driving the

adoption of cutting-edge technologies such as generative AI, robotics, and cloud native

platforms. His work accelerates business value by turning strategic R&D into scalable

solutions that empower clients to lead in digital-transformation-driven markets.

Acknowledgements
The authors would like to express their sincere gratitude to all contributors and reviewers

who supported the development of this white paper. We would like to thank Tobias

Geißinger, Timmo Sturm, Daniel Spieß, Rüdiger Stern, Andreas Kiep, Sebastian Angerer,

Max Haberstroh, Thomas Reisenweber, Christian Kohlschein, Christof Horn, Liam Friel,

Garrett Graham, Ronobijay Bhaumik, Ashish Wadjikar, Georg Brutzer, Nitin Ugale, Alexia

Solvay, Marcus Hammes, Atilla Akdere, Rick Bouter, Prashant Chouhan and Hendrik

Purwins for the many stimulating discussions.

We would also like to thank the sponsors and program leadership of the Accenture x DFKI

AI Partner Lab: Jochen Malinowski, Felix Klemm, Antonio Krüger, Galia Diez, Jens Haupert,

Harun Karimpur, and Pascal Lessel.

We would also like to express our sincere thanks to Ann-Christine Predian, Alexander

Kemper, Timo Altmann, Nina Böckel, Florian Böhme, Christopher Knorr, Serdar Bulut and

Pascalis Trentsios for their valuable support. Their expertise and commitment were

fundamental in shaping the quality and depth of this work.

Special thanks go to Benedict Homuth and Yannik Dahmann for their valuable support in

preparing the white paper and contributing to the editorial.

